1
|
Cheng W, Ji T, Zhou S, Shi Y, Jiang L, Zhang Y, Yan D, Yang Q, Song Y, Cai R, Xu W. Molecular epidemiological characteristics of echovirus 6 in mainland China: extensive circulation of genotype F from 2007 to 2018. Arch Virol 2021; 166:1305-1312. [PMID: 33638089 PMCID: PMC8036204 DOI: 10.1007/s00705-020-04934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
Echovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.
Collapse
Affiliation(s)
- Wenjun Cheng
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuaifeng Zhou
- Hunan Provincial Centers for Disease Control and Prevention, Changsha, People's Republic of China
| | - Yong Shi
- Jiangxi Provincial Centers for Disease Control and Prevention, Nanchang, People's Republic of China
| | - Lili Jiang
- Yunnan Provincial Centers for Disease Control and Prevention, Kunming, People's Republic of China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qian Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ru Cai
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China.
| | - Wenbo Xu
- Medical School, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China.
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Hou W, Yang L, Li S, Yu H, Xu L, He D, Chen M, He S, Ye X, Que Y, Shih JWK, Cheng T, Xia N. Construction and characterization of an infectious cDNA clone of Echovirus 25. Virus Res 2015; 205:41-4. [PMID: 26004198 DOI: 10.1016/j.virusres.2015.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022]
Abstract
Echovirus 25 (E-25) is a member of the enterovirus family and a common pathogen that induces hand, foot, and mouth disease (HFMD), meningitis, skin rash, and respiratory illnesses. In this study, we constructed and characterized an infectious full-length E-25 cDNA clone derived from the XM0297 strain, which was the first subgenotype D6 strain isolated in Xiamen, China. The 5'-Untranslated Regions (5'-UTR), P3 (3A-3B, 3D) and P3 (3C) regions of this E-25 (XM0297) strain were highly similar to EV-B77, E-16 and E-13, respectively. Our data demonstrate that the rescued E-25 viruses exhibited similar growth kinetics to the prototype virus strain XM0297. We observed the rescued viral particles using transmission electron microscope (TEM) and found them to possess an icosahedral structure, with a diameter of approximately 30 nm. The cross neutralization test demonstrated that the E-25 (XM0297) strain immune serum could not neutralize EV-A71, CV-A16 or CV-B3; likewise, the EV-A71 and CV-A16 immune serum could not neutralize E-25 (XM0297). The availability of this infectious clone will greatly enhance future virological investigations and possible vaccine development against E-25.
Collapse
Affiliation(s)
- Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Lisheng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Delei He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Mengyuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Shuizhen He
- Xiamen Center for Disease Control and Prevention, Fujian, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., Beijing 102206, PR China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - James Wai Kuo Shih
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
3
|
Figueiredo CA, Luchs A, Russo DH, de Cassia Compagnoli Carmona R, Afonso AMS, de Oliveira MI, Curti SP, de Moraes JC, Toscano CM, Ciccone FH, Timenetsky MDCST. Rubella virus genotype 1G and echovirus 9 as etiologic agents of exanthematous diseases in Brazil: insights from phylogenetic analysis. Arch Virol 2013; 159:1445-51. [PMID: 24327091 DOI: 10.1007/s00705-013-1935-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/24/2013] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to identify the rubella virus (RV) and enterovirus (EV) genotypes detected during the Epidemiological Surveillance on Exanthematic Febrile Diseases (VIGIFEX) study and to perform phylogenetic analysis. Ten RV- and four EV-positive oropharyngeal samples isolated from cell culture were subjected to RT-PCR and sequencing. Genotype 1G and echovirus 9 (E-9) was identified in RV- and EV-positive samples, respectively. The RV 1G genotype has been persisting in Brazil since 2000-2001. No evidence of E-9 being involved in exanthematic illness in Brazil has been reported previously. Differential laboratory diagnosis is essential for management of rash and fever disease.
Collapse
|
4
|
Smura T, Kakkola L, Blomqvist S, Klemola P, Parsons A, Kallio-Kokko H, Savolainen-Kopra C, Kainov DE, Roivainen M. Molecular evolution and epidemiology of echovirus 6 in Finland. INFECTION GENETICS AND EVOLUTION 2013; 16:234-47. [DOI: 10.1016/j.meegid.2013.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
|