1
|
Jossé L, Bones AJ, Purton T, Michaelis M, Tsaousis AD. A Cell Culture Platform for the Cultivation of Cryptosporidium parvum. ACTA ACUST UNITED AC 2019; 53:e80. [PMID: 30735306 DOI: 10.1002/cpmc.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cryptosporidium is a genus of ubiquitous unicellular parasites belonging to the phylum Apicomplexa. Cryptosporidium species are the second largest cause of childhood diarrhea and are associated with increased morbidity. Accompanying this is the low availability of treatment and lack of vaccines. The major barrier to developing effective treatment is the lack of reliable in vitro culture methods. Recently, our lab has successfully cultivated C. parvum in the esophageal cancer-derived cell line COLO-680N, and has been able to maintain infection for several weeks. The success of this cell line was assessed with a combination of various techniques including fluorescent microscopy and qPCR. In addition, to tackle the issue of long-term oocyst production in vitro, a simple, low-cost bioreactor system using the COLO-680N cell line was established, which produced infectious oocysts for 4 months. This chapter provides details on the methodologies used to culture, maintain, and assess Cryptosporidium infection and propagation in COLO-680N. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lyne Jossé
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Alexander J Bones
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom.,Current address: Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Tracey Purton
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
2
|
Bones AJ, Jossé L, More C, Miller CN, Michaelis M, Tsaousis AD. Past and future trends of Cryptosporidium in vitro research. Exp Parasitol 2018; 196:28-37. [PMID: 30521793 PMCID: PMC6333944 DOI: 10.1016/j.exppara.2018.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022]
Abstract
Cryptosporidium is a genus of single celled parasites capable of infecting a wide range of animals including humans. Cryptosporidium species are members of the phylum apicomplexa, which includes well-known genera such as Plasmodium and Toxoplasma. Cryptosporidium parasites cause a severe gastro-intestinal disease known as cryptosporidiosis. They are one of the most common causes of childhood diarrhoea worldwide, and infection can have prolonged detrimental effects on the development of children, but also can be life threatening to HIV/AIDS patients and transplant recipients. A variety of hosts can act as reservoirs, and Cryptosporidium can persist in the environment for prolonged times as oocysts. While there has been substantial interest in these parasites, there is very little progress in terms of treatment development and understanding the majority of the life cycle of this unusual organism. In this review, we will provide an overview on the existing knowledge of the biology of the parasite and the current progress in developing in vitro cultivation systems. We will then describe a synopsis of current and next generation approaches that could spearhead further research in combating the parasite.
Collapse
Affiliation(s)
- Alexander J Bones
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Lyne Jossé
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Charlotte More
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Christopher N Miller
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK; School of Biosciences, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|
3
|
Melicherová J, Hofmannová L, Valigurová A. Response of cell lines to actual and simulated inoculation with Cryptosporidium proliferans. Eur J Protistol 2017; 62:101-121. [PMID: 29316479 DOI: 10.1016/j.ejop.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The need for an effective treatment against cryptosporidiosis has triggered studies in the search for a working in vitro model. The peculiar niche of cryptosporidia at the brush border of host epithelial cells has been the subject of extensive debates. Despite extensive research on the invasion process, it remains enigmatic whether cryptosporidian host-parasite interactions result from an active invasion process or through encapsulation. We used HCT-8 and HT-29 cell lines for in vitro cultivation of the gastric parasite Cryptosporidium proliferans strain TS03. Using electron and confocal laser scanning microscopy, observations were carried out 24, 48 and 72 h after inoculation with a mixture of C. proliferans oocysts and sporozoites. Free sporozoites and putative merozoites were observed apparently searching for an appropriate infection site. Advanced stages, corresponding to trophozoites and meronts/gamonts enveloped by parasitophorous sac, and emptied sacs were detected. As our observations showed that even unexcysted oocysts became enveloped by cultured cell projections, using polystyrene microspheres, we evaluated the response of cell lines to simulated inoculation with cryptosporidian oocysts to verify innate and parasite-induced behaviour. We found that cultured cell encapsulation of oocysts is induced by parasite antigens, independent of any active invasion/motility.
Collapse
Affiliation(s)
- Janka Melicherová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lada Hofmannová
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
4
|
Abstract
Cryptosporidium research has focused on the development of infection control, and effective therapy that has thus far been hampered by the inability to culture Cryptosporidium in vitro. Other limitations include inadequate animal models, cumbersome screening procedures for chemotherapeutic approaches and a lack of tools for genetic manipulation. These limitations can, however, be eased by the improvement and focused development of in vitro cultivation. The ability to culture relevant Cryptosporidium isolates in vitro and to propagate the life cycle stages that are responsible for causing disease in an infected host is still a critical link. This ability will facilitate other relevant approaches, e.g., the ability to knockout genes and the application of broader screening for drug discoveries and vaccine developments, in combination with new discoveries on the parasite's basic biology, genetic manipulation and new life cycle stages. Success in this effort represents an essential step towards significant progress in the control of cryptosporidiosis.
Collapse
|
5
|
Huang L, Zhu H, Zhang S, Wang R, Liu L, Jian F, Ning C, Zhang L. An in vitro model of infection of chicken embryos by Cryptosporidium baileyi. Exp Parasitol 2014; 147:41-7. [DOI: 10.1016/j.exppara.2014.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/16/2022]
|
6
|
Müller J, Hemphill A. In vitro culture systems for the study of apicomplexan parasites in farm animals. Int J Parasitol 2012; 43:115-24. [PMID: 23000674 DOI: 10.1016/j.ijpara.2012.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 01/02/2023]
Abstract
In vitro culture systems represent powerful tools for the study of apicomplexan parasites such as Cryptosporidium, Eimeria, Sarcocystis, Neospora, Toxoplasma, Besnoitia, Babesia and Theileria, all with high relevance for farm animals. Proliferative stages of these parasites have been cultured in vitro employing a large variety of cell culture and explant approaches. For some, such as Cryptosporidium and Eimeria, the sexual development has been reproduced in cell cultures, while for others, animal experimentation is required to fulfill the life cycle. In vitro cultures have paved the way to exploit the basic biology of these organisms, and had a major impact on the development of tools for diagnostic purposes. With the aid of in vitro cultivation, studies on host-parasite interactions, on factors involved in innate resistance, stage conversion and differentiation, genetics and transfection technology, vaccine candidates and drug effectiveness could be carried out. The use of transgenic parasites has facilitated high-throughput screening of anti-microbial compounds that are active against the proliferative stages. Here, we review the basic features of cell culture-based in vitro systems for apicomplexan parasites that are relevant for farm animals, and discuss their applications with a focus on drug identification and studies of stage differentiation.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | |
Collapse
|
7
|
Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011; 41:1231-42. [PMID: 21889507 DOI: 10.1016/j.ijpara.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023]
Abstract
This overview discusses findings from culturing Cryptosporidium spp. in cell and axenic cultures as well as factors limiting the development of this parasite in cultivation systems during recent years. A systematic review is undertaken of findings regarding the life cycle of the parasite, taking into account physiological, biochemical and genetic aspects, in the hope that this attempt will facilitate future approaches to research and developments in the understanding of Cryptosporidium biology.
Collapse
Affiliation(s)
- P Karanis
- University of Cologne, Center for Anatomy, Institute II, Molecular and Medical Parasitology, Joseph-Stelzmann-Street 9, Geb.35, 50937 Köln, Germany.
| | | |
Collapse
|
8
|
Cryptosporidium: New developments in cell culture. Exp Parasitol 2010; 124:54-60. [DOI: 10.1016/j.exppara.2009.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 05/06/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022]
|