1
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
2
|
Segers C, Mysara M, Claesen J, Baatout S, Leys N, Lebeer S, Verslegers M, Mastroleo F. Intestinal mucositis precedes dysbiosis in a mouse model for pelvic irradiation. ISME COMMUNICATIONS 2021; 1:24. [PMID: 36737646 PMCID: PMC9723693 DOI: 10.1038/s43705-021-00024-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Pelvic radiotherapy is known to evoke intestinal mucositis and dysbiosis. Currently, there are no effective therapies available to mitigate these injuries, which is partly due to a lack of insight into the events causing mucositis and dysbiosis. Here, the complex interplay between the murine host and its microbiome following pelvic irradiation was mapped by characterizing intestinal mucositis along with extensive 16S microbial profiling. We demonstrated important morphological and inflammatory implications within one day after exposure, thereby impairing intestinal functionality and inducing translocation of intraluminal bacteria into mesenteric lymph nodes as innovatively quantified by flow cytometry. Concurrent 16S microbial profiling revealed a delayed impact of pelvic irradiation on beta diversity. Analysis of composition of microbiomes identified biomarkers for pelvic irradiation. Among them, members of the families Ruminococcaceae, Lachnospiraceae and Porphyromonadaceae were differentially affected. Altogether, our unprecedented findings showed how pelvic irradiation evoked structural and functional changes in the intestine, which secondarily resulted in a microbiome shift. Therefore, the presented in vivo irradiation-gut-microbiome platform allows further research into the pathobiology of pelvic irradiation-induced intestinal mucositis and resultant dysbiosis, as well as the exploration of mitigating treatments including drugs and food supplements.
Collapse
Affiliation(s)
- Charlotte Segers
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Jürgen Claesen
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sarah Baatout
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, University of Ghent, Ghent, Belgium
| | - Natalie Leys
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mieke Verslegers
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Felice Mastroleo
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium.
| |
Collapse
|
3
|
Gupta N, Kainthola A, Tiwari M, Agrawala PK. Gut microbiota response to ionizing radiation and its modulation by HDAC inhibitor TSA. Int J Radiat Biol 2020; 96:1560-1570. [PMID: 33001776 DOI: 10.1080/09553002.2020.1830317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM Trichostatin A (TSA) has been shown to mitigate whole body γ-radiation-induced morbidity and mortality. The current study aimed at studying the effects of TSA post-irradiation treatment on gut-microbiota, especially the translocation of the microbes from the intestine to other organs in C57 Bl/6 mice model. MATERIALS AND METHODS On 1st, 3rd 5th 7th 9th 12th and 14th days after various treatments bacteria were isolated from the intestine and nearby organs (mesenteric lymph node, spleen and liver) for further analysis. The jejunum part of all animals was processed for histological analysis. RESULTS The group radiation + drug showed reduced susceptibility to radiation injury as well as microbiota related anomalies compared to the irradiated alone group. This was described by increased microflora in different parts of the GI tract in the radiation + drug group compared to the irradiated group and reduced histopathological damages in the jejunum. Also, a reduced percentage of translocated bacteria were found in different organs of radiation + drug group animals. CONCLUSION TSA treatment post-irradiation could effectively control bacterial translocation as well as GI injury in mice.
Collapse
Affiliation(s)
- Noopur Gupta
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Anup Kainthola
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Manisha Tiwari
- Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Paban K Agrawala
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
4
|
Abstract
RATIONALE Radiation enteritis (RE) is one of the serious complications caused by the radiotherapy and it can occur in any segment of the intestine, including small intestine, colon, and rectum. It can cause a number of serious problems of the intestine, such as chronic ulcers, bleeding, intestinal stenosis, intestinal fistula, and perforation. At present, there is no standard treatment guideline for the RE. PATIENT CONCERNS A 54-year-old male patient received surgery and chemotherapy for rectal cancer and radiofrequency ablation (RFA) for a single metastatic carcinoma of the liver. Three years later, he was diagnosed with recurrent lesion in the rectal anastomotic stoma and was treated with radiotherapy with a total dose of 70 Gy. Following this, he had persistent abdominal pain and diarrhea for 1 year. DIAGNOSES Colonoscopy confirmed a diagnosis of RE. INTERVENTIONS Since intestinal probiotics, intestinal mucosal protectants, antidiarrheal drugs, and other treatments were not effective; the patient was treated by RFA. OUTCOMES Clinical symptoms of the patient were gradually decreased after the RFA. Colonoscopy examination was performed 3 months later and intestinal mucosa was found to have healed well. LESSONS RFA is an effective treatment for patients with RE, and it is expected to be one of the standard treatments for the RE.
Collapse
|
5
|
Yavas C, Yavas G, Celik E, Buyukyoruk A, Buyukyoruk C, Yuce D, Ata O. Beta-Hydroxy-Beta-Methyl-Butyrate, L-glutamine, and L-arginine Supplementation Improves Radiation-Induce Acute Intestinal Toxicity. J Diet Suppl 2018; 16:576-591. [PMID: 29969326 DOI: 10.1080/19390211.2018.1472709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We aimed to evaluate effects of β-hydroxy-β-methylbutyrate, L-glutamine, and L-arginine (HMB/GLN/ARG) on radiation-induced acute intestinal toxicity. Forty rats were divided into four groups: group (G) 1 was defined as control group, and G2 was radiation therapy (RT) control group. G3 and G4 were HMB/GLN/ARG control and RT plus HMB/GLN/ARG groups, respectively. HMB/GLN/ARG started from day of RT and continued until the animals were sacrificed 10 days after RT. The extent of surface epithelium smoothing, villous atrophy, lamina propria inflammation, cryptitis, crypt distortion, regenerative atypia, vascular dilatation and congestion, and fibrosis were quantified on histological sections of intestinal mucosa. Statistical analyses were performed using the analysis of variance (ANOVA) test. There were significant differences between study groups regarding extent of surface epithelium smoothing, villous atrophy, lamina propria inflammation, cryptitis and crypt distortion, regenerative atypia, vascular dilatation and congestion, and fibrosis (p values were 0.019 for fibrosis, <.001 for the others). Pair-wise comparisons revealed significant differences regarding surface epithelium smoothing, villous atrophy, lamina propria inflammation, cryptitis, vascular dilatation, and congestion between G2 and G4 (p values were <.001, .033, <.001, .007, and <.001, respectively). Fibrosis score was significantly different only between G1 and G2 (p = .015). Immunohistochemical TGF-β score of G2 was significantly higher than G1 and G3 (p values were .006 and .017, respectively). There was no difference between TGF-β staining scores of G2 and G4. Concomitant use of HMB/GLN/ARG appears to ameliorate radiation-induced acute intestinal toxicity; however, this finding should be clarified with further studies.
Collapse
Affiliation(s)
- Cagdas Yavas
- Selcuk University, Department of Radiation Oncology , Konya , Turkey
| | - Guler Yavas
- Selcuk University, Department of Radiation Oncology , Konya , Turkey
| | - Esin Celik
- Selcuk University, Department of Pathology , Konya , Turkey
| | - Ahmet Buyukyoruk
- Konya Training and Research Hospital, Department of Radiation Oncology , Konya , Turkey
| | - Cennet Buyukyoruk
- Necmettin Erbakan University, Department of Family Medicine , Konya , Turkey
| | - Deniz Yuce
- Hacettepe University, Department of Preventive Oncology , Ankara , Turkey
| | - Ozlem Ata
- Selcuk University, Department of Medical Oncology , Konya , Turkey
| |
Collapse
|
6
|
Jang H, Park S, Lee J, Myung JK, Jang WS, Lee SJ, Myung H, Lee C, Kim H, Lee SS, Jin YW, Shim S. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice. J Gastroenterol Hepatol 2018; 33:878-886. [PMID: 29047150 DOI: 10.1111/jgh.14021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Radiation-induced colitis is a common clinical problem associated with radiotherapy and accidental exposure to ionizing radiation. Goblet cells play a pivotal role in the intestinal barrier against pathogenic bacteria. Rebamipide, an anti-gastric ulcer drug, has the effects to promote goblet cell proliferation. The aim of this study was to investigate whether radiation-induced colonic injury could be alleviated by rebamipide. METHODS This study orally administered rebamipide for 6 days to mice, which were subjected to 13 Gy abdominal irradiation, to evaluate the therapeutic effects of rebamipide against radiation-induced colitis. To confirm the effects of rebamipide on irradiated colonic epithelial cells, this study used the HT29 cell line. RESULTS Rebamipide clearly alleviated the acute radiation-induced colitis, as reflected by the histopathological data, and significantly increased the number of goblet cells. The drug also inhibited intestinal inflammation and protected from bacterial translocation during acute radiation-induced colitis. Furthermore, rebamipide significantly increased mucin 2 expression in both the irradiated mouse colon and human colonic epithelial cells. Additionally, rebamipide accelerated not only the recovery of defective tight junctions but also the differentiation of impaired goblet cells in an irradiated colonic epithelium, which indicates that rebamipide has beneficial effects on the colon. CONCLUSIONS Rebamipide is a therapeutic candidate for radiation-induced colitis, owing to its ability to inhibit inflammation and protect the colonic epithelial barrier.
Collapse
Affiliation(s)
- Hyosun Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Janet Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Changsun Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young-Woo Jin
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|