1
|
Fernandes Junior HJ, de Araújo EA, Machado Junior JA, Lutz Motta FM, Guarize GF, Cheng LC, Tantray J, Medeiros JVR, Nicolau LAD, Barbosa AHP, Caixeta A, Rocco IS, Guizilini S, Pires-Oliveira M, Taha MO, Caricati-Neto A, Gomes WJ, Tallo FS, Menezes-Rodrigues FS. Cardiotoxic and Cardioprotective Effects of Methylene Blue in the Animal Model of Cardiac Ischemia and Reperfusion. Biomedicines 2024; 12:2575. [PMID: 39595141 PMCID: PMC11591808 DOI: 10.3390/biomedicines12112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Treatment of patients with myocardial ischemic diseases crucially involves cardiac reperfusion (CR). However, oxidative stress and tissue lesions caused by CR may also lead to lethal complications, such as arrythmias and vasoplegic syndrome (VS). Although methylene blue (MB) has long been used to treat VS due to cardiac ischemia and reperfusion (CIR) and/or surgery because of its vascular effects, MB's effects on the heart are unclear. Therefore, we investigated the potential cardioprotective or arrhythmogenic effects of MB in an animal model of CIR. To this end, 12-16-week-old male Wistar rats were divided into four experimental groups: (a) rats subjected to SHAM surgery with no ischemia; (b) rats subjected to CIR and treated with a vehicle (SS + CIR); and (c) rats subjected to CIR and treated with 2 mg/kg i.v. MB before ischemia (MB + ISQ) or (d) after ischemia but before reperfusion (ISQ + MB). An ECG analysis was used to evaluate the incidence of ventricular arrhythmias (VAs), atrioventricular blocks (AVBs), and lethality (LET) resulting from CIR. After CIR, rat hearts were removed for histopathological analysis and lipid hydroperoxide (LH) measurements. Results: The incidence of VA, AVB, and LET was significantly increased in the MB + ISQ group (VA = 100%; AVB = 100%; LET = 100%) but significantly reduced in the ISQ + MB group (VA = 42.8%; AVB = 28.5%; LET = 21.4%) compared with the SS + CIR group (VA = 85.7%; AVB = 71.4%; LET = 64.2%). LH concentration was significantly reduced in both MB-treated groups, but myocardial injuries were increased only in the MB + ISQ group when compared with the SS + CIR group. Conclusions: These results indicate that MB produces a biphasic effect on CIR, with cardiotoxic effects when administered before cardiac ischemia and cardioprotective effects when administered after ischemia but before cardiac reperfusion.
Collapse
Affiliation(s)
- Hezio Jadir Fernandes Junior
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - José Antônio Machado Junior
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| | - Fabio Marinho Lutz Motta
- School of Medicine, Universidade Santo Amaro (UNISA), São Paulo 04829-300, SP, Brazil; (F.M.L.M.); (G.F.G.); (L.C.C.)
| | - Gabriela Ferrazzano Guarize
- School of Medicine, Universidade Santo Amaro (UNISA), São Paulo 04829-300, SP, Brazil; (F.M.L.M.); (G.F.G.); (L.C.C.)
| | - Lucas Chen Cheng
- School of Medicine, Universidade Santo Amaro (UNISA), São Paulo 04829-300, SP, Brazil; (F.M.L.M.); (G.F.G.); (L.C.C.)
| | - Junaid Tantray
- Department of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (J.V.R.M.); (L.A.D.N.)
| | - Lucas Antonio Duarte Nicolau
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (J.V.R.M.); (L.A.D.N.)
| | - Adriano Henrique Pereira Barbosa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Adriano Caixeta
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Isadora S. Rocco
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Solange Guizilini
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
- Cardiovascular Surgery Discipline, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil
| | | | - Murched Omar Taha
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| | - Afonso Caricati-Neto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Walter José Gomes
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
- Cardiovascular Surgery Discipline, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil
| | - Fernando Sabia Tallo
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| | - Francisco Sandro Menezes-Rodrigues
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| |
Collapse
|
2
|
Tallo FS, de Santana PO, Pinto SAG, Lima RY, de Araújo EA, Tavares JGP, Pires-Oliveira M, Nicolau LAD, Medeiros JVR, Taha MO, David AI, Luna-Filho B, Filho CEB, Barbosa AHP, Silva CMC, Wanderley AG, Caixeta A, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation of the Ca 2+/cAMP/Adenosine Signaling in Cardiac Cells as a New Cardioprotective Strategy to Reduce Severe Arrhythmias in Myocardial Infarction. Pharmaceuticals (Basel) 2023; 16:1473. [PMID: 37895945 PMCID: PMC10610028 DOI: 10.3390/ph16101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Acute myocardial infarction (AMI) is the main cause of morbidity and mortality worldwide and is characterized by severe and fatal arrhythmias induced by cardiac ischemia/reperfusion (CIR). However, the molecular mechanisms involved in these arrhythmias are still little understood. To investigate the cardioprotective role of the cardiac Ca2+/cAMP/adenosine signaling pathway in AMI, L-type Ca2+ channels (LTCC) were blocked with either nifedipine (NIF) or verapamil (VER), with or without A1-adenosine (ADO), receptors (A1R), antagonist (DPCPX), or cAMP efflux blocker probenecid (PROB), and the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by CIR in rats was evaluated. VA, AVB and LET incidences were evaluated by ECG analysis and compared between control (CIR group) and intravenously treated 5 min before CIR with NIF 1, 10, and 30 mg/kg and VER 1 mg/kg in the presence or absence of PROB 100 mg/kg or DPCPX 100 µg/kg. The serum levels of cardiac injury biomarkers total creatine kinase (CK) and CK-MB were quantified. Both NIF and VER treatment were able to attenuate cardiac arrhythmias caused by CIR; however, these antiarrhythmic effects were abolished by pretreatment with PROB and DPCPX. The total serum CK and CK-MB were similar in all groups. These results indicate that the pharmacological modulation of Ca2+/cAMP/ADO in cardiac cells by means of attenuation of Ca2+ influx via LTCC and the activation of A1R by endogenous ADO could be a promising therapeutic strategy to reduce the incidence of severe and fatal arrhythmias caused by AMI in humans.
Collapse
Affiliation(s)
- Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Patricia Oliveira de Santana
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Sandra Augusta Gordinho Pinto
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Rildo Yamaguti Lima
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - José Gustavo Padrão Tavares
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil; (J.G.P.T.); (A.C.-N.)
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura—School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil;
| | - Lucas Antonio Duarte Nicolau
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (L.A.D.N.); (J.V.R.M.)
| | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (L.A.D.N.); (J.V.R.M.)
| | - Murched Omar Taha
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| | - André Ibrahim David
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Adriano Henrique Pereira Barbosa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Célia Maria Camelo Silva
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema 09913-030, SP, Brazil;
| | - Adriano Caixeta
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil; (J.G.P.T.); (A.C.-N.)
| | - Francisco Sandro Menezes-Rodrigues
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| |
Collapse
|
3
|
Filho CEB, Barbosa AHP, Nicolau LAD, Medeiros JVR, Pires-Oliveira M, dos Santos Póvoa RM, Govato TCP, Júnior HJF, de Carvalho RG, Luna-Filho B, Sabia Tallo F, de Araújo EA, Padrão Tavares JG, Arida RM, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation by Low Molecular Weight Heparin of Purinergic Signaling in Cardiac Cells Prevents Arrhythmia and Lethality Induced by Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:jcdd10030103. [PMID: 36975867 PMCID: PMC10058697 DOI: 10.3390/jcdd10030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Although several studies suggest that heparins prevent arrhythmias caused by acute myocardial infarction (AMI), the molecular mechanisms involved remain unclear. To investigate the involvement of pharmacological modulation of adenosine (ADO) signaling in cardiac cells by a low-molecular weight heparin (enoxaparin; ENOX) used in AMI therapy, the effects of ENOX on the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by cardiac ischemia and reperfusion (CIR) were evaluated, with or without ADO signaling blockers. Methods: To induce CIR, adult male Wistar rats were anesthetized and subjected to CIR. Electrocardiogram (ECG) analysis was used to evaluate CIR-induced VA, AVB, and LET incidence, after treatment with ENOX. ENOX effects were evaluated in the absence or presence of an ADO A1-receptor antagonist (DPCPX) and/or an inhibitor of ABC transporter-mediated cAMP efflux (probenecid, PROB). Results: VA incidence was similar between ENOX-treated (66%) and control rats (83%), but AVB (from 83% to 33%) and LET (from 75% to 25%) incidences were significantly lower in rats treated with ENOX. These cardioprotective effects were blocked by either PROB or DPCPX. Conclusion: These results indicate that ENOX was effective in preventing severe and lethal arrhythmias induced by CIR due to pharmacological modulation of ADO signaling in cardiac cells, suggesting that this cardioprotective strategy could be promising in AMI therapy.
Collapse
Affiliation(s)
- Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | | | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura–School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil
| | - Rui Manuel dos Santos Póvoa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Hézio Jadir Fernandes Júnior
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Rafael Guzella de Carvalho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | | |
Collapse
|
4
|
Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Protective effect of (Xenical+GSF) against I/R-induced blood brain barrier disruption, ionic edema, lipid deregulation and neuroinflammation. Microvasc Res 2020; 132:104054. [PMID: 32768464 DOI: 10.1016/j.mvr.2020.104054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/09/2022]
Abstract
Ischemic stroke is a leading cause of mortality worldwide that occurs following the reduction or interruption of blood brain supply, characterized by a cascade of early events as oxidative stress and ensuing neuro-inflammation, energy failure and the burst of intracellular Ca++ resulting in activation of phospholipases and large increase in FFA including arachidonic acid, ultimately leading to nervous cell death. Grape Seed Flour (GSF) is a complex polyphenolic mixture harboring antioxidant, anti-inflammatory and neuroprotective properties. Orlistat (Xenical ™,Xe) is a gastro-intestinal lipase inhibitor and an anti-obesity agent. In an earlier study we reported the higher efficiency in neuroprotection against HFD-induced brain lipotoxicity when combining the two drugs (GSF + Xe). As a result repurposing Xe as an adjunct to GSF therapy against stroke appeared relevant and worthy of investigation. I/R insult disrupted the blood brain barrier (BBB) as assessed by EB dye extravasation, increased water and Na+ within the brain. Ultrastructurally I/R altered the brain blood capillaries at the vicinity of hippocampus dentate gyrus area as assessed by transmission and scanning electron microscopy. I/R altered lipid metabolism as revealed by LDL/HDL ratio, lipase activity, and FFA profiles. Moreover, I/R induced neuro-inflammation as assessed by down-regulation of anti-inflammatory CD 56 and up-regulation of pro-inflammatory CD 68 antigen. Importantly almost all I/R-induced disturbances were retrieved partially upon Xe or GSF on their own, and optimally when combining the two drugs. Xe per se is protective against I/R injury and the best neuroprotection was obtained when associating low dosage Xe with high dosage GSF, enabling neuroprevention and cell survival within hippocampus dentate gyrus area as revealed by increased staining of Ki 67 proliferation biomarker.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
5
|
Menezes-Rodrigues FS, Tavares JGP, Vasques ER, Errante PR, Araújo EAD, Pires-Oliveira M, Scorza CA, Scorza FA, Taha MO, Caricati-Neto A. Cardioprotective effects of pharmacological blockade of the mitochondrial calcium uniporter on myocardial ischemia-reperfusion injury. Acta Cir Bras 2020; 35:e202000306. [PMID: 32692797 PMCID: PMC7251977 DOI: 10.1590/s0102-865020200030000006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/22/2020] [Indexed: 05/13/2023] Open
Abstract
PURPOSE To evaluate whether the attenuation of mitochondrial Ca2+ overload produced by pharmacological blockade of mitochondrial Ca2+ uniporter (MCU) protects the myocardium against injuries caused by cardiac ischemia and reperfusion (CIR). METHODS CIR was induced in adult male Wistar rats (300-350 g) by occlusion of the left anterior descendent coronary artery (10 min), followed by reperfusion (120 min). Rats were treated with different doses of MCU blocker ruthenium red (RuR), administered 5 min before ischemia or reperfusion. RESULTS In untreated rats, the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB) and the lethality (LET) induced by CIR were 85%, 79% and 70%, respectively. In rats treated with RuR before ischemia, the incidences of VA, AVB and LET were significantly reduced to 62%, 25% and 25%, respectively. In rats treated with RuR after ischemia, the incidences of VA, AVB and LET were significantly reduced to 50%, 25% and 25%, respectively. CONCLUSION The significant reduction of the incidence of CIR-induced VA, AVB and LET produced by the treatment with RuR indicates that the attenuation of mitochondrial Ca2+ overload produced by pharmacological blockade of MCU can protect the myocardium against injuries caused by CIR.
Collapse
|
6
|
Recent Advances in Pharmacological and Non-Pharmacological Strategies of Cardioprotection. Int J Mol Sci 2019; 20:ijms20164002. [PMID: 31426434 PMCID: PMC6720817 DOI: 10.3390/ijms20164002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemic heart diseases (IHD) are the leading cause of death worldwide. Although the principal form of treatment of IHD is myocardial reperfusion, the recovery of coronary blood flow after ischemia can cause severe and fatal cardiac dysfunctions, mainly due to the abrupt entry of oxygen and ionic deregulation in cardiac cells. The ability of these cells to protect themselves against injury including ischemia and reperfusion (I/R), has been termed “cardioprotection”. This protective response can be stimulated by pharmacological agents (adenosine, catecholamines and others) and non-pharmacological procedures (conditioning, hypoxia and others). Several intracellular signaling pathways mediated by chemical messengers (enzymes, protein kinases, transcription factors and others) and cytoplasmic organelles (mitochondria, sarcoplasmic reticulum, nucleus and sarcolemma) are involved in cardioprotective responses. Therefore, advancement in understanding the cellular and molecular mechanisms involved in the cardioprotective response can lead to the development of new pharmacological and non-pharmacological strategies for cardioprotection, thus contributing to increasing the efficacy of IHD treatment. In this work, we analyze the recent advances in pharmacological and non-pharmacological strategies of cardioprotection.
Collapse
|
7
|
Menezes-Rodrigues FS, Errante PR, Tavares JGP, Ferraz RRN, Gomes WJ, Taha MO, Scorza CA, Scorza FA, Caricati-Neto A. Pharmacological modulation of b-adrenoceptors as a new cardioprotective strategy for therapy of myocardial dysfunction induced by ischemia and reperfusion. Acta Cir Bras 2019; 34:e201900505. [PMID: 31166461 PMCID: PMC6583939 DOI: 10.1590/s0102-865020190050000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/25/2019] [Indexed: 01/29/2023] Open
Abstract
Purpose: To evaluate the cardioprotective response of the pharmacological modulation of β-adrenergic receptors (β-AR) in animal model of cardiac ischemia and reperfusion (CIR), in spontaneously hypertensive (SHR) and normotensive (NWR) rats. Methods: CIR was induced by the occlusion of left anterior descendent coronary artery (10 min) and reperfusion (75 min). The SHR was treated with β-AR antagonist atenolol (AT, 10 mg/kg, IV) 5 min before CIR, and NWR were treated with β-AR agonist isoproterenol (ISO, 0.5 mg/kg, IV) 5 min before CIR. Results: The treatment with AT increased the incidence of VA, AVB and LET in SHR, suggesting that spontaneous cardioprotection in hypertensive animals was abolished by blockade of β-AR. In contrast, the treatment with ISO significantly reduced the incidence of ventricular arrhythmia, atrioventricular blockade and lethality in NWR (30%, 20% and 20%, respectively), suggesting that the activation of β-AR stimulate cardioprotection in normotensive animals. Serum CK-MB were higher in SHR/CIR and NWR/CIR compared to respective SHAM group (not altered by treatment with AT or ISO). Conclusion: The pharmacological modulation of β-AR could be a new cardioprotective strategy for the therapy of myocardial dysfunctions induced by CIR related to cardiac surgery and cardiovascular diseases.
Collapse
|
8
|
Novel Potentials of the DPP-4 Inhibitor Sitagliptin against Ischemia-Reperfusion (I/R) Injury in Rat Ex-Vivo Heart Model. Int J Mol Sci 2018; 19:ijms19103226. [PMID: 30340421 PMCID: PMC6213995 DOI: 10.3390/ijms19103226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral anti-diabetic drugs, implicated in pleiotropic secondary cardioprotective effects. The aim of the study was to unveil the unknown and possible cardioprotective targets that can be exerted by sitagliptin (Sitg) against ischemia-reperfusion (I/R) injury. Male wistar rats received 2 weeks’ Sitg oral treatment of different doses (25, 50, 100, and 150 mg/kg/day), or saline as a Control. Hearts were then isolated and subjected to two different I/R injury protocols: 10 min perfusion, 45 min regional ischemia, and 120 min reperfusion for infarct size (IS) measurement, or: 10 min perfusion, 45 min regional ischemia and 10 min reperfusion for biochemical analysis: nitric oxide synthases (NOSs) and DPP-4 activity, glucagon-like peptide-1 (GLP-1), Calcium, transient receptor potential vanilloid (TRPV)-1 and calcitonin gene-related peptide (CGRP) levels, transient receptor potential canonical (TRPC)-1 and e-NOS protein expression. NOS inhibitor (l-NAME) and TRPV-1 inhibitor (Capsazepine) were utilized to confirm the implication of both signaling mechanisms in DPP-4 inhibition-induced at the level of IS. Findings show that Sitg (50 mg) resulted in significant decrease in IS and DPP-4 activity, and significant increase in GLP-1, NOS activity, e-NOS expression, TRPV-1 level and TRPC-1 expression, compared to controls. Results of CGRP are in line with TRPV-1, as a downstream regulatory effect. NOS system and transient receptor potential (TRP) channels can contribute to DPP-4 inhibition-mediated cardioprotection against I/R injury using Sitagliptin.
Collapse
|