1
|
Generozo SR, Tallo FS, Pires-Oliveira M, Braga CE, Yamamoto JUDS, Sassi LDO, de Novais MAP, Barbosa AHP, Caricati-Neto A, Lopes RD, Menezes-Rodrigues FS. Sociodemographic profile of patients treated by the Hemodynamics and Interventional Cardiology Service from Hospital São Paulo-Brazil. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2025; 71:e20250127. [PMID: 40172405 PMCID: PMC11964398 DOI: 10.1590/1806-9282.20250127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE Ischemic heart disease and acute myocardial infarction are the main causes of death and morbidity worldwide. It has been proposed that knowledge of the profile of patients treated allows the development of more effective strategies to improve adherence to treatment and consequently the best clinical results. The aim of this study was to develop a descriptive and observational study to identify and describe the sociodemographic profile of patients treated by the medical complex of Hemodynamics and Interventional Cardiology Service of Hospital São Paulo from Escola Paulista de Medicina/Universidade Federal de São Paulo. METHODS This study was performed on 3,593 patients from the Hemodynamics and Interventional Cardiology Service/Hospital São Paulo/Escola Paulista de Medicina/Universidade Federal de São Paulo complex between July 1, 2020, and October 30, 2022. Using data collected on the REDCap platform, variables, such as gender, age group, ethnicity, education level, and origin of the patients, were analyzed. RESULTS Of the total patients (3,593), 60.1% were male, 59.18% were older adults, 66.34% belonged to White race, and 33.69% had incomplete primary education. Geographically, most patients were from the capital of São Paulo State (76.46%), with a smaller proportion coming from the greater São Paulo area (16.77%) and other regions. CONCLUSION Understanding the sociodemographic profile of patients treated by the medical complex of Hemodynamics and Interventional Cardiology Service/Hospital São Paulo/Escola Paulista de Medicina/Universidade Federal de São Paulo will be fundamental for developing more effective and personalized medical intervention strategies, aiming to increase treatment adherence and improve the quality of care provided. These data may also be useful for other medical centers in Brazil and other parts of the world.
Collapse
Affiliation(s)
| | - Fernando Sabia Tallo
- Universidade Federal de São Paulo – São Paulo (SP), Brazil
- Associação Médica Brasileira – São Paulo (SP), Brazil
| | | | | | | | | | | | | | | | - Renato Delascio Lopes
- Associação Médica Brasileira – São Paulo (SP), Brazil
- Duke University – Durham, United States
| | | |
Collapse
|
2
|
Fernandes Junior HJ, de Araújo EA, Machado Junior JA, Lutz Motta FM, Guarize GF, Cheng LC, Tantray J, Medeiros JVR, Nicolau LAD, Barbosa AHP, Caixeta A, Rocco IS, Guizilini S, Pires-Oliveira M, Taha MO, Caricati-Neto A, Gomes WJ, Tallo FS, Menezes-Rodrigues FS. Cardiotoxic and Cardioprotective Effects of Methylene Blue in the Animal Model of Cardiac Ischemia and Reperfusion. Biomedicines 2024; 12:2575. [PMID: 39595141 PMCID: PMC11591808 DOI: 10.3390/biomedicines12112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Treatment of patients with myocardial ischemic diseases crucially involves cardiac reperfusion (CR). However, oxidative stress and tissue lesions caused by CR may also lead to lethal complications, such as arrythmias and vasoplegic syndrome (VS). Although methylene blue (MB) has long been used to treat VS due to cardiac ischemia and reperfusion (CIR) and/or surgery because of its vascular effects, MB's effects on the heart are unclear. Therefore, we investigated the potential cardioprotective or arrhythmogenic effects of MB in an animal model of CIR. To this end, 12-16-week-old male Wistar rats were divided into four experimental groups: (a) rats subjected to SHAM surgery with no ischemia; (b) rats subjected to CIR and treated with a vehicle (SS + CIR); and (c) rats subjected to CIR and treated with 2 mg/kg i.v. MB before ischemia (MB + ISQ) or (d) after ischemia but before reperfusion (ISQ + MB). An ECG analysis was used to evaluate the incidence of ventricular arrhythmias (VAs), atrioventricular blocks (AVBs), and lethality (LET) resulting from CIR. After CIR, rat hearts were removed for histopathological analysis and lipid hydroperoxide (LH) measurements. Results: The incidence of VA, AVB, and LET was significantly increased in the MB + ISQ group (VA = 100%; AVB = 100%; LET = 100%) but significantly reduced in the ISQ + MB group (VA = 42.8%; AVB = 28.5%; LET = 21.4%) compared with the SS + CIR group (VA = 85.7%; AVB = 71.4%; LET = 64.2%). LH concentration was significantly reduced in both MB-treated groups, but myocardial injuries were increased only in the MB + ISQ group when compared with the SS + CIR group. Conclusions: These results indicate that MB produces a biphasic effect on CIR, with cardiotoxic effects when administered before cardiac ischemia and cardioprotective effects when administered after ischemia but before cardiac reperfusion.
Collapse
Affiliation(s)
- Hezio Jadir Fernandes Junior
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - José Antônio Machado Junior
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| | - Fabio Marinho Lutz Motta
- School of Medicine, Universidade Santo Amaro (UNISA), São Paulo 04829-300, SP, Brazil; (F.M.L.M.); (G.F.G.); (L.C.C.)
| | - Gabriela Ferrazzano Guarize
- School of Medicine, Universidade Santo Amaro (UNISA), São Paulo 04829-300, SP, Brazil; (F.M.L.M.); (G.F.G.); (L.C.C.)
| | - Lucas Chen Cheng
- School of Medicine, Universidade Santo Amaro (UNISA), São Paulo 04829-300, SP, Brazil; (F.M.L.M.); (G.F.G.); (L.C.C.)
| | - Junaid Tantray
- Department of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (J.V.R.M.); (L.A.D.N.)
| | - Lucas Antonio Duarte Nicolau
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (J.V.R.M.); (L.A.D.N.)
| | - Adriano Henrique Pereira Barbosa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Adriano Caixeta
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Isadora S. Rocco
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
| | - Solange Guizilini
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
- Cardiovascular Surgery Discipline, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil
| | | | - Murched Omar Taha
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| | - Afonso Caricati-Neto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Walter José Gomes
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
- Cardiovascular Surgery Discipline, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil
| | - Fernando Sabia Tallo
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| | - Francisco Sandro Menezes-Rodrigues
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (H.J.F.J.); (E.A.d.A.); (A.H.P.B.); (A.C.); (I.S.R.); (S.G.); (W.J.G.)
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil; (J.A.M.J.); (M.O.T.)
| |
Collapse
|
3
|
Pędzińska-Betiuk A, Gergs U, Weresa J, Remiszewski P, Harasim-Symbor E, Malinowska B. Comparison of Cardioprotective Potential of Cannabidiol and β-Adrenergic Stimulation Against Hypoxia/Reoxygenation Injury in Rat Atria and Ventricular Papillary Muscles. Pharmaceuticals (Basel) 2024; 17:1379. [PMID: 39459019 PMCID: PMC11509923 DOI: 10.3390/ph17101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia is one of the most significant pathogenic factors in cardiovascular diseases. Preclinical studies suggest that nonpsychoactive cannabidiol (CBD) and β-adrenoceptor stimulation might possess cardioprotective potential against ischemia-reperfusion injury. The current study evaluates the influence of hypoxia-reoxygenation (H/R) on the function of atria and ventricular papillary muscles in the presence of CBD and the nonselective β-adrenoceptor agonist isoprenaline (ISO). METHODS The concentration curves for ISO were constructed in the presence of CBD (1 µM) before or after H/R. In chronic experiments (CBD 10 mg/kg, 14 days), the left atria isolated from spontaneously hypertensive (SHR) and their normotensive control (WKY) rats were subjected to H/R following ISO administration. RESULTS Hypoxia decreased the rate and force of contractions in all compartments. The right atria were the most resistant to hypoxia regardless of prior β-adrenergic stimulation. Previous β-adrenergic stimulation improved recovery in isolated left atria and right (but not left) papillary muscles. Acute (but not chronic) CBD administration increased the effects of ISO in left atria and right (but not left) papillary muscles. Hypertension accelerates left atrial recovery during reoxygenation. CONCLUSIONS H/R directly modifies the function of particular cardiac compartments in a manner dependent on cardiac region and β-adrenergic prestimulation. The moderate direct cardioprotective potential of CBD and β-adrenergic stimulation against H/R is dependent on the cardiac region, and it is less than in the whole heart with preserved coronary flow. In clinical terms, our research expands the existing knowledge about the impact of cannabidiol on cardiac ischemia, the world's leading cause of death.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany;
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| |
Collapse
|
4
|
Verma VK, Mutneja E, Malik S, Sahu AK, Prajapati V, Bhardwaj P, Ray R, Nag TC, Bhatia J, Arya DS. Abatacept: A Promising Repurposed Solution for Myocardial Infarction-Induced Inflammation in Rat Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3534104. [PMID: 38957586 PMCID: PMC11219209 DOI: 10.1155/2024/3534104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 07/04/2024]
Abstract
Myocardial infarction (MI) is irreversible damage to the myocardial tissue caused by prolonged ischemia/hypoxia, subsequently leading to loss of contractile function and myocardial damage. However, after a perilous period, ischemia-reperfusion (IR) itself causes the generation of oxygen free radicals, disturbance in cation homeostasis, depletion of cellular energy stores, and activation of innate and adaptive immune responses. The present study employed Abatacept (ABT), which is an anti-inflammatory drug, originally used as an antirheumatic response agent. To investigate the cardioprotective potential of ABT, primarily, the dose was optimized in a chemically induced model of myocardial necrosis. Thereafter, ABT optimized the dose of 5 mg/kg s.c. OD was investigated for its cardioprotective potential in a surgical model of myocardial IR injury, where animals (n = 30) were randomized into five groups: Sham, IR-C, Telmi10 + IR (Telmisartan, 10 mg/kg oral OD), ABT5 + IR, ABT perse. ABT and telmisartan were administered for 21 days. On the 21st day, animals were subjected to LAD coronary artery occlusion for 60 min, followed by reperfusion for 45 min. Further, the cardioprotective potential was assessed through hemodynamic parameters, oxidant-antioxidant biochemical enzymatic parameters, cardiac injury, inflammatory markers, histopathological analysis, TUNEL assay, and immunohistochemical evaluation, followed by immunoblotting to explore signaling pathways. The statistics were performed by one-way analysis of variance, followed by the Tukey comparison post hoc tests. Noteworthy, 21 days of ABT pretreatment amended the hemodynamic and ventricular functions in the rat models of MI. The cardioprotective potential of ABT is accompanied by inhibiting MAP kinase signaling and modulating Nrf-2/HO-1 proteins downstream signaling cascade. Overall, the present work bolsters the previously known anti-inflammatory role of ABT in MI and contributes a mechanistic insight and application of clinically approved drugs in averting the activation of inflammatory response.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Vaishali Prajapati
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Priya Bhardwaj
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Ruma Ray
- Cardiac Pathology Laboratory, Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Dharamvir Singh Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
5
|
Tallo FS, de Santana PO, Pinto SAG, Lima RY, de Araújo EA, Tavares JGP, Pires-Oliveira M, Nicolau LAD, Medeiros JVR, Taha MO, David AI, Luna-Filho B, Filho CEB, Barbosa AHP, Silva CMC, Wanderley AG, Caixeta A, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation of the Ca 2+/cAMP/Adenosine Signaling in Cardiac Cells as a New Cardioprotective Strategy to Reduce Severe Arrhythmias in Myocardial Infarction. Pharmaceuticals (Basel) 2023; 16:1473. [PMID: 37895945 PMCID: PMC10610028 DOI: 10.3390/ph16101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Acute myocardial infarction (AMI) is the main cause of morbidity and mortality worldwide and is characterized by severe and fatal arrhythmias induced by cardiac ischemia/reperfusion (CIR). However, the molecular mechanisms involved in these arrhythmias are still little understood. To investigate the cardioprotective role of the cardiac Ca2+/cAMP/adenosine signaling pathway in AMI, L-type Ca2+ channels (LTCC) were blocked with either nifedipine (NIF) or verapamil (VER), with or without A1-adenosine (ADO), receptors (A1R), antagonist (DPCPX), or cAMP efflux blocker probenecid (PROB), and the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by CIR in rats was evaluated. VA, AVB and LET incidences were evaluated by ECG analysis and compared between control (CIR group) and intravenously treated 5 min before CIR with NIF 1, 10, and 30 mg/kg and VER 1 mg/kg in the presence or absence of PROB 100 mg/kg or DPCPX 100 µg/kg. The serum levels of cardiac injury biomarkers total creatine kinase (CK) and CK-MB were quantified. Both NIF and VER treatment were able to attenuate cardiac arrhythmias caused by CIR; however, these antiarrhythmic effects were abolished by pretreatment with PROB and DPCPX. The total serum CK and CK-MB were similar in all groups. These results indicate that the pharmacological modulation of Ca2+/cAMP/ADO in cardiac cells by means of attenuation of Ca2+ influx via LTCC and the activation of A1R by endogenous ADO could be a promising therapeutic strategy to reduce the incidence of severe and fatal arrhythmias caused by AMI in humans.
Collapse
Affiliation(s)
- Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Patricia Oliveira de Santana
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Sandra Augusta Gordinho Pinto
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Rildo Yamaguti Lima
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - José Gustavo Padrão Tavares
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil; (J.G.P.T.); (A.C.-N.)
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura—School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil;
| | - Lucas Antonio Duarte Nicolau
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (L.A.D.N.); (J.V.R.M.)
| | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil; (L.A.D.N.); (J.V.R.M.)
| | - Murched Omar Taha
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| | - André Ibrahim David
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Adriano Henrique Pereira Barbosa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Célia Maria Camelo Silva
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema 09913-030, SP, Brazil;
| | - Adriano Caixeta
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil; (J.G.P.T.); (A.C.-N.)
| | - Francisco Sandro Menezes-Rodrigues
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil; (P.O.d.S.); (S.A.G.P.); (R.Y.L.); (E.A.d.A.); (B.L.-F.); (C.E.B.F.); (A.H.P.B.); (C.M.C.S.); (A.C.)
- Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil; (M.O.T.); (A.I.D.)
| |
Collapse
|
6
|
Menezes-Rodrigues FS, de Oliveira MP, Araújo EA, Ferraz HB, Finsterer J, Olszewer E, Taha MO, Scorza CA, Caricati-Neto A, Scorza FA. Role of cardiac β 1-adrenergic and A 1-adenosine receptors in severe arrhythmias related to Parkinson's disease. Clinics (Sao Paulo) 2023; 78:100243. [PMID: 37459671 PMCID: PMC10757299 DOI: 10.1016/j.clinsp.2023.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
AIMS Although reduced life expectancy in Parkinson's Disease (PD) patients has been related to severe cardiac arrhythmias due to autonomic dysfunctions, its molecular mechanisms remain unclear. To investigate the role of cardiac β1-Adrenergic (β1AR) and A1-Adenosine (A1R) receptors in these dysfunctions, the pharmacological effects of stimulation of cardiac β1AR (isoproterenol, ISO), in the absence and presence of cardiac β1AR (atenolol, AT) or A1R (1,3-dipropyl-8-cyclopentyl xanthine, DPCPX) blockade, on the arrhythmias induced by Ischemia/Reperfusion (CIR) in an animal PD model were studied. METHODS PD was produced by dopaminergic lesions (confirmed by immunohistochemistry analysis) caused by the injection of 6-hydroxydopamine (6-OHDA, 6 μg) in rat striatum. CIR was produced by a surgical interruption for 10 min followed by reestablishment of blood circulation in the descendent left coronary artery. On the incidence of CIR-Induced Ventricular Arrhythmias (VA), Atrioventricular Block (AVB), and Lethality (LET), evaluated by Electrocardiogram (ECG) analysis, the effects of intravenous treatment with ISO, AT and DPCPX (before CIR) were studied. RESULTS VA, AVB and LET incidences were significantly higher in 6-OHDA (83%, 92%, 100%, respectively) than in control rats (58%, 67% and 67%, respectively). ISO treatment significantly reduced these incidences in 6-OHDA (33%, 33% and 42%, respectively) and control rats (25%, 25%, 33%, respectively), indicating that stimulation of cardiac β1AR induced cardioprotection. This response was prevented by pretreatment with AT and DPCPX, confirming the involvement of cardiac β1AR and A1R. CONCLUSION Pharmacological modulation of cardiac β1AR and A1R could be a potential therapeutic strategy to reduce severe arrhythmias and increase life expectancy in PD patients.
Collapse
Affiliation(s)
- Francisco Sandro Menezes-Rodrigues
- Laboratory of Autonomic and Cardiovascular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; PostGraduate Program in Cardiology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marcelo Pires de Oliveira
- School of Medicine, Centro Universitário UNIFAS, União Metropolitana para a Educação e Cultura, Lauro de Freitas, BA, Brazil
| | - Erisvaldo Amarante Araújo
- Laboratory of Autonomic and Cardiovascular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Henrique Ballalai Ferraz
- Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Efrain Olszewer
- Fundação de Apoio à Pesquisa e Estudo na Área de Saúde (FAPES), São Paulo, SP, Brazil
| | - Murched Omar Taha
- Department of Surgery, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Carla Alessandra Scorza
- Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Afonso Caricati-Neto
- Laboratory of Autonomic and Cardiovascular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Fúlvio Alexandre Scorza
- Neuroscience Discipline, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
7
|
Filho CEB, Barbosa AHP, Nicolau LAD, Medeiros JVR, Pires-Oliveira M, dos Santos Póvoa RM, Govato TCP, Júnior HJF, de Carvalho RG, Luna-Filho B, Sabia Tallo F, de Araújo EA, Padrão Tavares JG, Arida RM, Caricati-Neto A, Menezes-Rodrigues FS. Pharmacological Modulation by Low Molecular Weight Heparin of Purinergic Signaling in Cardiac Cells Prevents Arrhythmia and Lethality Induced by Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:jcdd10030103. [PMID: 36975867 PMCID: PMC10058697 DOI: 10.3390/jcdd10030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Although several studies suggest that heparins prevent arrhythmias caused by acute myocardial infarction (AMI), the molecular mechanisms involved remain unclear. To investigate the involvement of pharmacological modulation of adenosine (ADO) signaling in cardiac cells by a low-molecular weight heparin (enoxaparin; ENOX) used in AMI therapy, the effects of ENOX on the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by cardiac ischemia and reperfusion (CIR) were evaluated, with or without ADO signaling blockers. Methods: To induce CIR, adult male Wistar rats were anesthetized and subjected to CIR. Electrocardiogram (ECG) analysis was used to evaluate CIR-induced VA, AVB, and LET incidence, after treatment with ENOX. ENOX effects were evaluated in the absence or presence of an ADO A1-receptor antagonist (DPCPX) and/or an inhibitor of ABC transporter-mediated cAMP efflux (probenecid, PROB). Results: VA incidence was similar between ENOX-treated (66%) and control rats (83%), but AVB (from 83% to 33%) and LET (from 75% to 25%) incidences were significantly lower in rats treated with ENOX. These cardioprotective effects were blocked by either PROB or DPCPX. Conclusion: These results indicate that ENOX was effective in preventing severe and lethal arrhythmias induced by CIR due to pharmacological modulation of ADO signaling in cardiac cells, suggesting that this cardioprotective strategy could be promising in AMI therapy.
Collapse
Affiliation(s)
- Carlos Eduardo Braga Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | | | - Jand Venes Rolim Medeiros
- Department of Biotechnology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba 64202-020, PI, Brazil
| | - Marcelo Pires-Oliveira
- União Metropolitana de Educação e Cultura–School of Medicine (UNIME), Lauro de Freitas 42700-000, BA, Brazil
| | - Rui Manuel dos Santos Póvoa
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Hézio Jadir Fernandes Júnior
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Rafael Guzella de Carvalho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Bráulio Luna-Filho
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Fernando Sabia Tallo
- Department of Urgency and Emergency Care, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | - Erisvaldo Amarante de Araújo
- Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04024-000, SP, Brazil
| | | | - Ricardo Mario Arida
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | | |
Collapse
|
8
|
Menezes-Rodrigues FS, Tavares JGP, Vasques ER, Errante PR, Araújo EAD, Pires-Oliveira M, Scorza CA, Scorza FA, Taha MO, Caricati-Neto A. Cardioprotective effects of pharmacological blockade of the mitochondrial calcium uniporter on myocardial ischemia-reperfusion injury. Acta Cir Bras 2020; 35:e202000306. [PMID: 32692797 PMCID: PMC7251977 DOI: 10.1590/s0102-865020200030000006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/22/2020] [Indexed: 05/13/2023] Open
Abstract
PURPOSE To evaluate whether the attenuation of mitochondrial Ca2+ overload produced by pharmacological blockade of mitochondrial Ca2+ uniporter (MCU) protects the myocardium against injuries caused by cardiac ischemia and reperfusion (CIR). METHODS CIR was induced in adult male Wistar rats (300-350 g) by occlusion of the left anterior descendent coronary artery (10 min), followed by reperfusion (120 min). Rats were treated with different doses of MCU blocker ruthenium red (RuR), administered 5 min before ischemia or reperfusion. RESULTS In untreated rats, the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB) and the lethality (LET) induced by CIR were 85%, 79% and 70%, respectively. In rats treated with RuR before ischemia, the incidences of VA, AVB and LET were significantly reduced to 62%, 25% and 25%, respectively. In rats treated with RuR after ischemia, the incidences of VA, AVB and LET were significantly reduced to 50%, 25% and 25%, respectively. CONCLUSION The significant reduction of the incidence of CIR-induced VA, AVB and LET produced by the treatment with RuR indicates that the attenuation of mitochondrial Ca2+ overload produced by pharmacological blockade of MCU can protect the myocardium against injuries caused by CIR.
Collapse
|
9
|
Recent Advances in Pharmacological and Non-Pharmacological Strategies of Cardioprotection. Int J Mol Sci 2019; 20:ijms20164002. [PMID: 31426434 PMCID: PMC6720817 DOI: 10.3390/ijms20164002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemic heart diseases (IHD) are the leading cause of death worldwide. Although the principal form of treatment of IHD is myocardial reperfusion, the recovery of coronary blood flow after ischemia can cause severe and fatal cardiac dysfunctions, mainly due to the abrupt entry of oxygen and ionic deregulation in cardiac cells. The ability of these cells to protect themselves against injury including ischemia and reperfusion (I/R), has been termed “cardioprotection”. This protective response can be stimulated by pharmacological agents (adenosine, catecholamines and others) and non-pharmacological procedures (conditioning, hypoxia and others). Several intracellular signaling pathways mediated by chemical messengers (enzymes, protein kinases, transcription factors and others) and cytoplasmic organelles (mitochondria, sarcoplasmic reticulum, nucleus and sarcolemma) are involved in cardioprotective responses. Therefore, advancement in understanding the cellular and molecular mechanisms involved in the cardioprotective response can lead to the development of new pharmacological and non-pharmacological strategies for cardioprotection, thus contributing to increasing the efficacy of IHD treatment. In this work, we analyze the recent advances in pharmacological and non-pharmacological strategies of cardioprotection.
Collapse
|