1
|
Tong KL, Mahmood Zuhdi AS, Wong PF. The role of miR-134-5p in 7-ketocholesterol-induced human aortic endothelial dysfunction. EXCLI JOURNAL 2024; 23:1073-1090. [PMID: 39391056 PMCID: PMC11464864 DOI: 10.17179/excli2024-7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Atherosclerotic cardiovascular diseases are the leading causes of morbidity and mortality worldwide. In our previous study, a panel of miRNA including miR-134-5p was deregulated in young acute coronary syndrome (ACS) patients. However, the roles of these ACS-associated miRNAs in endothelial dysfunction, an early event preceding atherosclerosis, remain to be investigated. In the present study, human aortic endothelial cells (HAECs) were treated with 7-ketocholesterol (7-KC) to induce endothelial dysfunction. Following treatment with 20 μg/ml 7-KC, miR-134-5p was significantly up-regulated and endothelial nitric oxide synthase (eNOS) expression was suppressed. Endothelial barrier disruption was evidenced by the deregulation of adhesion molecules including the activation of focal adhesion kinase (FAK), down-regulation of VE-cadherin, up-regulation of adhesion molecules (E-selectin and ICAM-1), increased expression of inflammatory genes (IL1B, IL6 and COX2) and AKT activation. Knockdown of miR-134-5p in 7-KC-treated HAECs attenuated the suppression of eNOS, the activation of AKT, the down-regulation of VE-cadherin and the up-regulation of E-selectin. In addition, the interaction between miR-134-5p and FOXM1 mRNA was confirmed by the enrichment of FOXM1 transcripts in the pull-down miRNA-mRNA complex. Knockdown of miR-134-5p increased FOXM1 expression whereas transfection with mimic miR-134-5p decreased FOXM1 protein expression. In summary, the involvement of an ACS-associated miRNA, miR-134-5p in endothelial dysfunction was demonstrated. Findings from this study could pave future investigations into utilizing miRNAs as a supplementary tool in ACS diagnosis or as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
The expression profiling of serum miR-92a, miR-134 and miR-375 in acute ischemic stroke. Future Sci OA 2022; 8:FSO829. [PMID: 36874371 PMCID: PMC9979103 DOI: 10.2144/fsoa-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023] Open
Abstract
Aim To investigate the expression profile and diagnostic potentials of serum miR-92a, 134, and 375 in acute ischemic stroke (AIS) patients. Materials & methods Serum miRs-92a, 134, and 375 expression profiles were estimated by qRT-PCR for 70 AIS patients, age-matched with 25 control subjects. Their diagnostic potential was estimated by ROC analysis. Results Down-expression of miR-92a and miR-375 was found (56; 96.5%; -1.86 ± 1.36; and 53; 91.4%; -1.63 ± 1.38, respectively), while miR-134 showed a predominant upregulation (46; 79.3%; 0.853 ± 1.34). The diagnostic accuracy was the highest for miR-92a and miR-375 (area under the curve = 0.9183 and 0.898, respectively), with greater specificity for miR-375 (Sp = 96%). Conclusion Serum miR-92a and miR-375 could be promising early detective biomarkers of AIS.
Collapse
|
3
|
Tian Q, Shu L, Zhang P, Zeng T, Cao Y, Xi H, Peng Y, Wang Y, Mao X, Wang H. MN1 Neurodevelopmental Disease-Atypical Phenotype Due to a Novel Frameshift Variant in the MN1 Gene. Front Mol Neurosci 2022; 14:789778. [PMID: 34975401 PMCID: PMC8716923 DOI: 10.3389/fnmol.2021.789778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background:MN1 C-terminal truncation (MCTT) syndrome is caused by variants in the C-terminal region of MN1, which were first described in 2020. The clinical features of MCTT syndrome includes severe neurodevelopmental and brain abnormalities. We reported on a patient who carried the MN1 variant in the C-terminal region with mild developmental delay and normal brain magnetic resonance image (MRI). Methods: Detailed clinical information was collected in the pedigree. Whole-exome sequencing (WES) accompanied with Sanger sequencing validation were performed. A functional study based on HEK239T cells was performed. Results: A de novo heterozygous c.3734delT: p.L1245fs variant was detected. HEK239T cells transinfected with the de novo variant showed decreased proliferation, enhanced apoptotic rate, and MN1 nuclear aggregation. Conclusion: Our study expended the clinical and genetic spectrum of MCTT which contributes to the genetic counseling of the MN1 gene.
Collapse
Affiliation(s)
- Qi Tian
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Li Shu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Pu Zhang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ting Zeng
- The Ministry of Education and Science, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Yang Cao
- Department of Radiology, Chenzhou First People's Hospital, Chenzhou, China
| | - Hui Xi
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ying Peng
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Yaqin Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
4
|
Inhibition of miR-1224 suppresses hypoxia/reoxygenation-induced oxidative stress and apoptosis in cardiomyocytes through targeting GPX4. Exp Mol Pathol 2021; 121:104645. [PMID: 33989616 DOI: 10.1016/j.yexmp.2021.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
We have focused on the underlying role of miR-1224 in cardiomyocyte injury stimulated by hypoxia/reoxygenation (H/R). In the current study, the rat cardiomyocyte cell line H9C2 was used to construct a H/R cell model to validate the cardioprotective effects of miR-1224. Data from the dual-luciferase assay revealed that the glutathione peroxidase 4 (GPX4) was a direct target of miR-1224. Expression of miR-1224, determined using qRT-PCR, was remarkably increased while that of GPX4 protein, evaluated via western blotting, was significantly decreased in cardiomyocytes in response to H/R exposure. ROS generation, superoxide dismutase (SOD) activity, concentrations of malondialdehyde (MDA) and 4-hydroxy aldehydes (4-HNE), and H9C2 cell apoptosis were further evaluated following overexpression of miR-1224 or silencing of GPX4 in H9C2 cells. H9C2 cells under H/R conditions displayed increased synthesis of ROS, along with overexpression of miR-1224 and downregulation of GPX4. SOD activity was significantly decreased while concentrations of MDA and 4-HNE were markedly increased under H/R injury conditions. In addition, miR-1224 mimic or GPX4 siRNA plasmids dramatically enhanced H/R-mediated apoptosis, Bax expression and caspase-3 activity, with a concomitant reduction in Bcl-2 expression. Conversely, inhibition of miR-1224 exerted suppressive effects on oxidative stress and apoptosis in H9C2 cells under H/R conditions. Interestingly, silencing of GPX4 attenuated the negative effects of miR-1224 inhibition. Our results suggested that inhibition of miR-1224 caused resistance to H/R and diminished oxidative stress in vitro through targeting of GPX4.
Collapse
|
5
|
Murugesan S, Saravanakumar L, Powell MF, Rajasekaran NS, Kannappan R, Berkowitz DE. Role of exosomal microRNA signatures: An emerging factor in preeclampsia-mediated cardiovascular disease. Placenta 2021; 103:226-231. [PMID: 33171429 PMCID: PMC8278543 DOI: 10.1016/j.placenta.2020.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Preeclampsia (PE) and vascular dysfunction are major causes of maternal and neonatal morbidity and mortality. Although extensively studied, the complete understanding of the pathophysiology behind PE remains unclear. Current reports indicate that exosomes are essential mediators in PE-related cardiovascular disease (CVDs). Exosomes are synthesized from multivesicular bodies (MVB) and contain functionally active microRNAs miRNAs). These miRNAs have been shown to mediate physiological and pathological functions through autocrine, paracrine, and endocrine signaling mechanisms. The role of miRNAs in pregnant women with PE has been studied extensively. However, little is known about the effect of exosomal miRNAs (exomiR) in PE. This paper will review and discuss the existing evidence for exomiR function in PE and highlight the need for future studies to explore the role that exomiR signatures have in cardiovascular dysfunction associated with PE.
Collapse
Affiliation(s)
- Saravanakumar Murugesan
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Lakshmi Saravanakumar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mark F Powell
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Namakkal Soorappan Rajasekaran
- Cardiac Aging and Redox Signaling Laboratory, Center for Free Radical Biology, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, School of Engineering and Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Wang WL, Ge TY, Chen X, Mao Y, Zhu YZ. Advances in the Protective Mechanism of NO, H 2S, and H 2 in Myocardial Ischemic Injury. Front Cardiovasc Med 2020; 7:588206. [PMID: 33195476 PMCID: PMC7661694 DOI: 10.3389/fcvm.2020.588206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial ischemic injury is among the top 10 leading causes of death from cardiovascular diseases worldwide. Myocardial ischemia is caused mainly by coronary artery occlusion or obstruction. It usually occurs when the heart is insufficiently perfused, oxygen supply to the myocardium is reduced, and energy metabolism in the myocardium is abnormal. Pathologically, myocardial ischemic injury generates a large number of inflammatory cells, thus inducing a state of oxidative stress. This sharp reduction in the number of normal cells as a result of apoptosis leads to organ and tissue damage, which can be life-threatening. Therefore, effective methods for the treatment of myocardial ischemic injury and clarification of the underlying mechanisms are urgently required. Gaseous signaling molecules, such as NO, H2S, H2, and combined gas donors, have gradually become a focus of research. Gaseous signaling molecules have shown anti-apoptotic, anti-oxidative and anti-inflammatory effects as potential therapeutic agents for myocardial ischemic injury in a large number of studies. In this review, we summarize and discuss the mechanism underlying the protective effect of gaseous signaling molecules on myocardial ischemic injury.
Collapse
Affiliation(s)
| | | | - Xu Chen
- Guilin Medical College, Guilin, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- Guilin Medical College, Guilin, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
7
|
Choe N, Shin S, Joung H, Ryu J, Kim Y, Ahn Y, Kook H, Kwon D. The microRNA miR-134-5p induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells. J Cell Mol Med 2020; 24:10542-10550. [PMID: 32783377 PMCID: PMC7521311 DOI: 10.1111/jcmm.15670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022] Open
Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs) is a form of ectopic ossification in blood vessels. It can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that the microRNA miR-134-5p potentiates inorganic phosphate (Pi)-induced calcium deposition in VSMCs by inhibiting histone deacetylase 5 (HDAC5). Using miRNA microarray analysis of Pi-treated rat VSMCs, we first selected miR-134-5p for further evaluation. Quantitative RT-PCR confirmed that miR-134-5p was increased in Pi-treated A10 cells, a rat VSMC line. Transfection of miR-134-5p mimic potentiated the Pi-induced increase in calcium contents. miR-134-5p increased the amounts of bone runt-related transcription factor 2 (RUNX2) protein and bone morphogenic protein 2 (BMP2) mRNA in the presence of Pi but decreased the expression of osteoprotegerin (OPG). Bioinformatic analysis showed that the HDAC5 3'untranslated region (3'UTR) was one of the targets of miR-134-5p. The luciferase construct containing the 3'UTR of HDAC5 was down-regulated by miR-134-5p mimic in a dose-dependent manner in VSMCs. Overexpression of HDAC5 mitigated the calcium deposition induced by miR-134-5p. Our results suggest that a Pi-induced increase of miR-134-5p may cause vascular calcification through repression of HDAC5.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Sera Shin
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Hosouk Joung
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Juhee Ryu
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Young‐Kook Kim
- Department of BiochemistryChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Youngkeun Ahn
- Department of CardiologyChonnam National University HospitalGwangjuRepublic of Korea
| | - Hyun Kook
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Duk‐Hwa Kwon
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| |
Collapse
|
8
|
Lv F, Wang Z, Huang Y, Si A, Chen Y. CLEC3B protects H9c2 cardiomyocytes from apoptosis caused by hypoxia via the PI3K/Akt pathway. ACTA ACUST UNITED AC 2020; 53:e9693. [PMID: 32696821 PMCID: PMC7372944 DOI: 10.1590/1414-431x20209693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023]
Abstract
Ischemic heart disease (IHD) is one of the leading causes of death worldwide.
C-type lectin domain family 3 member B (CLEC3B) is a C-type lectin superfamily
member and is reported to promote tissue remodeling. The serum levels of CLEC3B
are downregulated in patients with cardiovascular disease. However, the
molecular mechanisms of CLEC3B in IHD is not well-characterized. Therefore, we
overexpressed CLEC3B and silenced CLEC3B in H9c2 rat cardiomyocytes for the
first time. We then constructed a model of IHD in vitro through
culturing H9c2 cardiomyocytes in serum-free medium under oxygen-deficit
conditions. Then, Cell Counting Kit-8 (CCK-8), flow cytometry, qRT-PCR, and
western blot assays were performed to investigate cell viability, apoptosis, and
expression levels of CLEC3B, phosphatidylinositol 3-kinase (PI3K),
phosphorylated PI3K (p-PI3K), protein kinase B (Akt), phosphorylated Akt
(p-Akt), and cleaved-caspase 3. We observed that the mRNA expression of CLEC3B
was decreased in hypoxic H9c2 cardiomyocytes (P<0.05). Overexpression of
CLEC3B increased cell viability (P<0.01), inhibited cell apoptosis
(P<0.05), upregulated the levels of p-PI3K/PI3K and p-Akt/Akt (P<0.01 or
P<0.05), and downregulated expression of cleaved-caspase 3 (P<0.001) in
hypoxic H9c2 cardiomyocytes while silencing of CLEC3B caused the opposite
results. Inhibition of the PI3K/Akt pathway reversed the protective effect of
CLEC3B on hypoxic H9c2 cardiomyocytes. Our study demonstrated that CLEC3B
alleviated the injury of hypoxic H9c2 cardiomyocytes via the PI3K/Akt
pathway.
Collapse
Affiliation(s)
- Fenghua Lv
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuo Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Huang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Aoyang Si
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yulei Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
9
|
Cao L, Chai S. miR‑320‑3p is involved in morphine pre‑conditioning to protect rat cardiomyocytes from ischemia/reperfusion injury through targeting Akt3. Mol Med Rep 2020; 22:1480-1488. [PMID: 32468068 PMCID: PMC7339661 DOI: 10.3892/mmr.2020.11190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Morphine pre-conditioning (MPC) can significantly reduce myocardial ischemic injury and inhibit cardiomyocyte apoptosis, but the underlying mechanism still remains unclear. The aim of the present study was to investigate the protective mechanism of MPC in myocardial hypoxia/reoxygenation (H/R) injury at the microRNA (miR) level. H9c2 cells were used as a model of H/R and subjected to morphine pre-treatment. The protective effects of MPC on H/R injury in cardiomyocytes were evaluated using MTT and colorimetric assay, as well as flow cytometry. In addition, reverse transcription-quantitative PCR, western blotting and dual-luciferase reporter assay experiments were performed to determine the relationship between MPC, miR-320-3p and Akt3, and their effects on H/R injury. The present study demonstrated that MPC enhanced cell activity, decreased LDH content, and reduced apoptosis in rat cardiomyocytes, suggesting that MPC could protect these cells from H/R injury. Moreover, MPC partially reversed the increase in miR-320-3p expression and the decrease in Akt3 levels caused by H/R injury. Inhibition of miR-320-3p expression also attenuated the effects of H/R on cardiomyocyte activity, LDH content and apoptosis. Furthermore, Akt3 was predicted to be a target gene of miR-320-3p, and overexpression of miR-320-3p inhibited the expression of Akt3, blocking the protective effects of MPC on the cells. The current findings revealed that MPC could protect cardiomyocytes from H/R damage through targeting miR-320-3p to regulate the PI3K/Akt3 signaling pathway.
Collapse
Affiliation(s)
- Lan Cao
- Department of Anesthesiology, Tiantai People's Hospital of Zhejiang Province, Tiantai, Zhejiang 317200, P.R. China
| | - Shijun Chai
- Department of Orthopedics, Tiantai People's Hospital of Zhejiang Province, Tiantai, Zhejiang 317200, P.R. China
| |
Collapse
|
10
|
Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci 2020; 27:63. [PMID: 32389123 PMCID: PMC7212687 DOI: 10.1186/s12929-020-00658-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essentially required by most eukaryotic organisms as a scavenger to remove harmful electron and hydrogen ions or as a critical substrate to ensure the proper execution of enzymatic reactions. All nucleated cells can sense oxygen concentration and respond to reduced oxygen availability (hypoxia). When oxygen delivery is disrupted or reduced, the organisms will develop numerous adaptive mechanisms to facilitate cells survived in the hypoxic condition. Normally, such hypoxic response will cease when oxygen level is restored. However, the situation becomes complicated if hypoxic stress persists (chronic hypoxia) or cyclic normoxia-hypoxia phenomenon occurs (intermittent hypoxia). A series of chain reaction-like gene expression cascade, termed hypoxia-mediated gene regulatory network, will be initiated under such prolonged or intermittent hypoxic conditions and subsequently leads to alteration of cellular function and/or behaviors. As a result, irreversible processes occur that may cause physiological disorder or even pathological consequences. A growing body of evidence implicates that hypoxia plays critical roles in the pathogenesis of major causes of mortality including cancer, myocardial ischemia, metabolic diseases, and chronic heart and kidney diseases, and in reproductive diseases such as preeclampsia and endometriosis. This review article will summarize current understandings regarding the molecular mechanism of hypoxia in these common and important diseases.
Collapse
Affiliation(s)
- Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - I-Chen Peng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|