1
|
Shan NL, Minden A, Furmanski P, Bak MJ, Cai L, Wernyj R, Sargsyan D, Cheng D, Wu R, Kuo HCD, Li SN, Fang M, Maehr H, Kong AN, Suh N. Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds. Cancer Prev Res (Phila) 2020; 13:673-686. [PMID: 32467291 DOI: 10.1158/1940-6207.capr-19-0566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ (DCIS), which accounts for one out of every five new breast cancer diagnoses, will progress to potentially lethal invasive ductal carcinoma (IDC) in about 50% of cases. Vitamin D compounds have been shown to inhibit progression to IDC in the MCF10DCIS model. This inhibition appears to involve a reduction in the cancer stem cell-like population in MCF10DCIS tumors. To identify genes that are involved in the vitamin D effects, a global transcriptomic analysis was undertaken of MCF10DCIS cells grown in mammosphere cultures, in which cancer stem-like cells grow preferentially and produce colonies by self-renewal and maturation, in the presence and absence of 1α25(OH)2D3 and a vitamin D analog, BXL0124. Using next-generation RNA-sequencing, we found that vitamin D compounds downregulated genes involved in maintenance of breast cancer stem-like cells (e.g., GDF15), epithelial-mesenchymal transition, invasion, and metastasis (e.g., LCN2 and S100A4), and chemoresistance (e.g., NGFR, PPP1R1B, and AGR2), while upregulating genes associated with a basal-like phenotype (e.g., KRT6A and KRT5) and negative regulators of breast tumorigenesis (e.g., EMP1). Gene methylation status was analyzed to determine whether the changes in expression induced by vitamin D compounds occurred via this mechanism. Ingenuity pathway analysis was performed to identify upstream regulators and downstream signaling pathway genes differentially regulated by vitamin D, including TP63 and vitamin D receptor -mediated canonical pathways in particular. This study provides a global profiling of changes in the gene signature of DCIS regulated by vitamin D compounds and possible targets for chemoprevention of DCIS progression to IDC in patients.
Collapse
Affiliation(s)
- Naing Lin Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Audrey Minden
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Li Cai
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Biomedical Engineering, School of Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Roman Wernyj
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hsiao-Chen D Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Shanyi N Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hubert Maehr
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ah-Ng Kong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey. .,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
2
|
Methylation Statuses of H19DMR and KvDMR at WT2 in Wilms Tumors in Taiwan. Pathol Oncol Res 2020; 26:2153-2159. [PMID: 32157637 DOI: 10.1007/s12253-020-00802-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Wilms tumor is the most common pediatric renal malignancy. Several genetic loci have been shown to be associated with its formation. Genetic or epigenetic aberrations at WT1 and WT2 loci have been implicated in the etiology of the majority of sporadic Wilms tumors. In our previous study, most Wilms tumors tested negative for both constitutional mutations and somatic mutations in the WT1 gene. Thus, WT2 may play an important role in these tumors. In the present study, we analyzed the methylation statuses of WT2 at 11p15 using methylation sensitive multiplex ligation-dependent probe amplification in six Wilms tumors. Paternal uniparental disomy at WT2 was observed in two Wilms tumors with epithelial components due to hypermethylation at H19DMR and hypomethylation at KvDMR. Our findings highlight the benefits of testing for 11p15 epigenetic abnormalities to identify Wilms tumors with epithelial components.
Collapse
|
3
|
The effectiveness of Wilms tumor screening in Beckwith-Wiedemann spectrum. J Cancer Res Clin Oncol 2019; 145:3115-3123. [PMID: 31583434 DOI: 10.1007/s00432-019-03038-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE It is well documented that patients with Beckwith-Wiedemann spectrum (BWS) have a significantly higher risk of developing Wilms tumor (WT) than the general population. There has been little research on the timing of WT diagnosis in BWS in regard to optimizing suggested screening protocols. METHODS A literature search was performed to identify all reports of patients with BWS and WT. These data were combined with unpublished data from patients in the authors' cohorts. Age at WT diagnosis was compared against data collected through the NIH Surveillance, Epidemiology, and End Results Program (SEER) registry. RESULTS Patients with BWS had a significantly higher incidence of WT diagnoses between age 12 and 84 months compared to patients in the SEER registry. Patients with BWS and WT diagnosed through screening had significantly lower stages at diagnosis compared to patients with BWS that were not screened. CONCLUSIONS Screening until age 7 years is effective in detecting close to 95% of all WT in patients with BWS.
Collapse
|
4
|
Anvar Z, Acurzio B, Roma J, Cerrato F, Verde G. Origins of DNA methylation defects in Wilms tumors. Cancer Lett 2019; 457:119-128. [PMID: 31103718 DOI: 10.1016/j.canlet.2019.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
Wilms tumor is an embryonic renal cancer that typically presents in early childhood and accounts for 7% of all paediatric cancers. Different genetic alterations have been described in this malignancy, however, only a few of them are associated with a majority of Wilms tumors. Alterations in DNA methylation, in contrast, are frequent molecular defects observed in most cases of Wilms tumors. How these epimutations are established in this tumor is not yet completely clear. The recent identification of the molecular actors required for the epigenetic reprogramming during embryogenesis suggests novel possible mechanisms responsible for the DNA methylation defects in Wilms tumor. Here, we provide an overview of the DNA methylation alterations observed in this malignancy and discuss the distinct molecular mechanisms by which these epimutations can arise.
Collapse
Affiliation(s)
- Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Josep Roma
- Vall d'Hebron Research Institute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Flavia Cerrato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Gaetano Verde
- Faculty of Medicine and Health Sciences, International University of Catalonia, Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
5
|
Germline Epigenetic Testing of Imprinting Disorders in a Diagnostic Setting. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
6
|
Grasso C, Trevisan M, Fiano V, Tarallo V, De Marco L, Sacerdote C, Richiardi L, Merletti F, Gillio-Tos A. Performance of Different Analytical Software Packages in Quantification of DNA Methylation by Pyrosequencing. PLoS One 2016; 11:e0150483. [PMID: 26934703 PMCID: PMC4775062 DOI: 10.1371/journal.pone.0150483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/14/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. OBJECTIVE Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. METHODS We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. RESULTS We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. CONCLUSION The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing.
Collapse
Affiliation(s)
- Chiara Grasso
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Morena Trevisan
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Tarallo
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura De Marco
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
- Cancer Epidemiology Unit, Department of Medical Sciences, City of Health and Science Hospital, Turin, Italy
| | - Carlotta Sacerdote
- Cancer Epidemiology Unit, Department of Medical Sciences, City of Health and Science Hospital, Turin, Italy
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Franco Merletti
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
- Cancer Epidemiology Unit, Department of Medical Sciences, City of Health and Science Hospital, Turin, Italy
| | - Anna Gillio-Tos
- Cancer Epidemiology Unit – C.E.R.M.S, Department of Medical Sciences, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
7
|
Schrijver WAME, Jiwa LS, van Diest PJ, Moelans CB. Promoter hypermethylation profiling of distant breast cancer metastases. Breast Cancer Res Treat 2015; 151:41-55. [PMID: 25841351 PMCID: PMC4408366 DOI: 10.1007/s10549-015-3362-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/26/2015] [Indexed: 12/22/2022]
Abstract
Promoter hypermethylation of tumor suppressor genes seems to be an early event in breast carcinogenesis and is potentially reversible. This makes methylation a possible therapeutic target, a marker for treatment response and/or a prognostic factor. Methylation status of 40 tumor suppressor genes was compared between 53 primary breast tumors and their corresponding metastases to brain, lung, liver, or skin. In paired analyses, a significant decrease in methylation values was seen in distant metastases compared to their primaries in 21/40 individual tumor suppressor genes. Furthermore, primary tumors that metastasized to the liver clustered together, in line with the finding that primary breast carcinomas that metastasized to the brain, skin, or lung, showed higher methylation values in up to 27.5 % of tumor suppressor genes than primary carcinomas that metastasized to the liver. Conversion in methylation status of several genes from the primary tumor to the metastasis had prognostic value, and methylation status of some genes in the metastases predicted survival after onset of metastases. Methylation levels for most of the analyzed tumor suppressor genes were lower in distant metastases compared to their primaries, pointing to the dynamic aspect of methylation of these tumor suppressor genes during cancer progression. Also, specific distant metastatic sites seem to show differences in methylation patterns, implying that hypermethylation profiles of the primaries may steer site-specific metastatic spread. Lastly, methylation status of the metastases seems to have prognostic value. These promising findings warrant further validation in larger patient cohorts and more tumor suppressor genes.
Collapse
Affiliation(s)
| | - Laura S. Jiwa
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 Utrecht, CX The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 Utrecht, CX The Netherlands
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 Utrecht, CX The Netherlands
| |
Collapse
|
8
|
Brioude F, Lacoste A, Netchine I, Vazquez MP, Auber F, Audry G, Gauthier-Villars M, Brugieres L, Gicquel C, Le Bouc Y, Rossignol S. Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr 2014; 80:457-65. [PMID: 24335096 DOI: 10.1159/000355544] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/11/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome associated with an increased risk of pediatric tumors. The underlying molecular abnormalities may be genetic (CDKN1C mutations or 11p15 paternal uniparental isodisomy, pUPD) or epigenetic (imprinting center region 1, ICR1, gain of methylation, ICR1 GOM, or ICR2 loss of methylation, ICR2 LOM). AIM We aimed to describe a cohort of 407 BWS patients with molecular defects of the 11p15 domain followed prospectively after molecular diagnosis. RESULTS Birth weight and length were significantly higher in patients with ICR1 GOM than in the other groups. ICR2 LOM and CDKN1C mutations were associated with a higher prevalence of exomphalos. Mean adult height (regardless of molecular subtype, n = 35) was 1.8 ± 1.2 SDS, with 18 patients having a final height above +2 SDS. The prevalence of tumors was 8.6% in the whole population; 28.6 and 17.3% of the patients with ICR1 GOM (all Wilms tumors) and 11p15 pUPD, respectively, developed a tumor during infancy. Conversely, the prevalence of tumors in patients with ICR2 LOM and CDKN1C mutations were 3.1 and 8.8%, respectively, with no Wilms tumors. CONCLUSION Based on these results for a large cohort, we formulated guidelines for the follow-up of these patients according to the molecular subtype of BWS.
Collapse
Affiliation(s)
- F Brioude
- AP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Noorlag R, van Kempen PMW, Moelans CB, de Jong R, Blok LER, Koole R, Grolman W, van Diest PJ, van Es RJJ, Willems SM. Promoter hypermethylation using 24-gene array in early head and neck cancer: better outcome in oral than in oropharyngeal cancer. Epigenetics 2014; 9:1220-7. [PMID: 25147921 DOI: 10.4161/epi.29785] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.
Collapse
Affiliation(s)
- Rob Noorlag
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Pauline M W van Kempen
- Department of Otorhinolaryngology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Cathy B Moelans
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Rick de Jong
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Laura E R Blok
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Ronald Koole
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Robert J J van Es
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Stefan M Willems
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| |
Collapse
|