1
|
Campos JMB, de Aguiar da Costa M, de Rezende VL, Costa RRN, Ebs MFP, Behenck JP, de Roch Casagrande L, Venturini LM, Silveira PCL, Réus GZ, Gonçalves CL. Animal Model of Autism Induced by Valproic Acid Combined with Maternal Deprivation: Sex-Specific Effects on Inflammation and Oxidative Stress. Mol Neurobiol 2025; 62:3653-3672. [PMID: 39316355 DOI: 10.1007/s12035-024-04491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) etiology probably involves a complex interplay of both genetic and environmental risk factors, which includes pre- and perinatal exposure to environmental stressors. Thus, this study evaluated the effects of prenatal exposure to valproic acid (VPA) combined with maternal deprivation (MD) on behavior, oxidative stress parameters, and inflammatory state at a central and systemic level in male and female rats. Pregnant Wistar rats were exposed to VPA during gestation, and the offspring were submitted to MD. Offspring were tested for locomotor and social behavior; rats were euthanized, where the cerebellum, posterior cortex, prefrontal cortex, and peripheric blood were collected for oxidative stress and inflammatory analysis. It was observed that young rats (25-30 days old) exposed only to VPA presented a lower social approach when compared to the control group. VPA + MD rats did not present the same deficit. Female rats exposed to VPA + MD presented oxidative stress in all brain areas analyzed. Male rats in the VPA and VPA + MD groups presented oxidative stress only in the cerebellum. Regarding inflammatory parameters, male rats exposed only to MD exhibited an increase in pro-inflammatory cytokines in the blood and in the cortex total. The same was observed in females exposed only to VPA. Animals exposed to VPA + MD showed no alterations in the cytokines analyzed. In summary, gestational (VPA) and perinatal (MD) insults can affect molecular mechanisms such as oxidative stress and inflammation differently depending on the sex and brain area analyzed. Combined exposition to VPA and MD triggers oxidative stress especially in female brains without evoking an inflammatory response.
Collapse
Affiliation(s)
- José Marcelo Botancin Campos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Rosiane Ronchi Nascimento Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Maria Fernanda Pedro Ebs
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
2
|
Stevenson RA, Segers M, Ferber S, Barense MD, Camarata S, Wallace MT. Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Res 2015; 9:720-38. [PMID: 26402725 DOI: 10.1002/aur.1566] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/22/2015] [Accepted: 08/29/2015] [Indexed: 12/21/2022]
Abstract
A growing area of interest and relevance in the study of autism spectrum disorder (ASD) focuses on the relationship between multisensory temporal function and the behavioral, perceptual, and cognitive impairments observed in ASD. Atypical sensory processing is becoming increasingly recognized as a core component of autism, with evidence of atypical processing across a number of sensory modalities. These deviations from typical processing underscore the value of interpreting ASD within a multisensory framework. Furthermore, converging evidence illustrates that these differences in audiovisual processing may be specifically related to temporal processing. This review seeks to bridge the connection between temporal processing and audiovisual perception, and to elaborate on emerging data showing differences in audiovisual temporal function in autism. We also discuss the consequence of such changes, the specific impact on the processing of different classes of audiovisual stimuli (e.g. speech vs. nonspeech, etc.), and the presumptive brain processes and networks underlying audiovisual temporal integration. Finally, possible downstream behavioral implications, and possible remediation strategies are outlined. Autism Res 2016, 9: 720-738. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Magali Segers
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Susanne Ferber
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Toronto, Ontario, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Toronto, Ontario, Canada
| | - Stephen Camarata
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Wallace MT, Stevenson RA. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 2014; 64:105-23. [PMID: 25128432 PMCID: PMC4326640 DOI: 10.1016/j.neuropsychologia.2014.08.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
Abstract
Behavior, perception and cognition are strongly shaped by the synthesis of information across the different sensory modalities. Such multisensory integration often results in performance and perceptual benefits that reflect the additional information conferred by having cues from multiple senses providing redundant or complementary information. The spatial and temporal relationships of these cues provide powerful statistical information about how these cues should be integrated or "bound" in order to create a unified perceptual representation. Much recent work has examined the temporal factors that are integral in multisensory processing, with many focused on the construct of the multisensory temporal binding window - the epoch of time within which stimuli from different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests that this temporal window is altered in a series of neurodevelopmental disorders, including autism, dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in multisensory temporal function may play an important role in the perceptual and cognitive weaknesses that characterize these clinical disorders. Within this context, focus on improving the acuity of multisensory temporal function may have important implications for the amelioration of the "higher-order" deficits that serve as the defining features of these disorders.
Collapse
Affiliation(s)
- Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA; Department of Hearing & Speech Sciences, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | - Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int 2013; 2013:623875. [PMID: 24062774 PMCID: PMC3767048 DOI: 10.1155/2013/623875] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/24/2013] [Accepted: 07/07/2013] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy is an emerging therapeutic modality with a great potential for the treatment of autism. Recent findings show that the major underlying pathogenetic mechanisms of autism are hypoperfusion and immune alterations in the brain. So conceptually, cellular therapy which facilitates counteractive processes of improving perfusion by angiogenesis and balancing inflammation by immune regulation would exhibit beneficial clinical effects in patients with autism. This is an open label proof of concept study of autologous bone marrow mononuclear cells (BMMNCs) intrathecal transplantation in 32 patients with autism followed by multidisciplinary therapies. All patients were followed up for 26 months (mean 12.7). Outcome measures used were ISAA, CGI, and FIM/Wee-FIM scales. Positron Emission Tomography-Computed Tomography (PET-CT) scan recorded objective changes. Out of 32 patients, a total of 29 (91%) patients improved on total ISAA scores and 20 patients (62%) showed decreased severity on CGI-I. The difference between pre- and postscores was statistically significant (P < 0.001) on Wilcoxon matched-pairs signed rank test. On CGI-II 96% of patients showed global improvement. The efficacy was measured on CGI-III efficacy index. Few adverse events including seizures in three patients were controlled with medications. The encouraging results of this leading clinical study provide future directions for application of cellular therapy in autism.
Collapse
|
5
|
Autism and ADHD: How far have we come in the comorbidity debate? Neurosci Biobehav Rev 2011; 35:1081-8. [DOI: 10.1016/j.neubiorev.2010.11.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/11/2010] [Accepted: 11/10/2010] [Indexed: 12/30/2022]
|
6
|
Temporal lobe epilepsy and social behavior: an animal model for autism? Epilepsy Behav 2008; 13:43-6. [PMID: 18439879 DOI: 10.1016/j.yebeh.2008.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 03/02/2008] [Accepted: 03/06/2008] [Indexed: 11/20/2022]
Abstract
Social behavior depends on the integrity of social brain circuitry. The temporal lobe is an important part of the social brain, and manifests morphological and functional alterations in autism spectrum disorders (ASD). Rats with temporal lobe epilepsy (TLE), induced with pilocarpine, were subjected to a social discrimination test that has been used to investigate potential animal models of ASD, and the results were compared with those for the control group. Rats with TLE exhibited fewer social behaviors than controls. No differences were observed in nonsocial behavior between groups. The results suggest an important role for the temporal lobe in regulating social behaviors. This animal model might be used to explore some questions about ASD pathophysiology.
Collapse
|
7
|
Mercadante MT, Cysneiros RM, Schwartzman JS, Arida RM, Cavalheiro EA, Scorza FA. Neurogenesis in the amygdala: A new etiologic hypothesis of autism? Med Hypotheses 2008; 70:352-7. [PMID: 17601677 DOI: 10.1016/j.mehy.2007.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 05/09/2007] [Indexed: 11/24/2022]
Abstract
Neurogenesis studies had an increased development after BrdU (5-bromo-3'-deoxyuridine), a marker of cell proliferation. Today, several studies have showed the relevance of neurogenesis in the hippocampal formation. Notwithstanding, other brains areas have been described presenting neurogenesis, including the amygdala. This key structure is a complex cerebral region which has been associated with social behaviors and the emotional significance of the daily experiences. Several studies have associated the amygdala to the autism, a severe neurodevelopmental disorder. In this paper, we discuss the hypothesis of neurogenesis in the amygdala as a contributing cause of autism. The social skills require competent new neuronal connections, including efficient plasticity synaptic rearranging. Interestingly, emotional context cannot be imprinting in mature neurons in the presence of GABA, a neurotransmitter release during new environments experiences. However, it is known that new neurons are not well responsive to GABA stimulation, allowing the long-term potentiation necessary for the learning process. Based on these evidence it is tantalizing to hypothesize that the sociability impairment seen in some individuals with autism may partly be assigned to impaired regulation of the GABAergic system and to the impact of this impairment on the adequate functioning of the amygdala and on its capacity to store new experiences and to modulate the plasticity of the corticostriatal connections.
Collapse
Affiliation(s)
- Marcos Tomanik Mercadante
- Department of Psychiatry, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|