1
|
de Oliva BHD, do Nascimento AB, de Oliveira JP, Guidone GHM, Schoeps BL, Silva LC, Barbosa MGL, Montini VH, de Oliveira Junior AG, Rocha SPD. Genomic insights into a Proteus mirabilis strain inducing avian cellulitis. Braz J Microbiol 2024; 55:4157-4166. [PMID: 39235714 PMCID: PMC11711737 DOI: 10.1007/s42770-024-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Proteus mirabilis, a microorganism distributed in soil, water, and animals, is clinically known for causing urinary tract infections in humans. However, recent studies have linked it to skin infections in broiler chickens, termed avian cellulitis, which poses a threat to animal welfare. While Avian Pathogenic Escherichia coli (APEC) is the primary cause of avian cellulitis, few cases of P. mirabilis involvement are reported, raising questions about the factors facilitating such occurrences. This study employed a pan-genomic approach to investigate whether unique genes exist in P. mirabilis strains causing avian cellulitis. The genome of LBUEL-A33, a P. mirabilis strain known to cause this infection, was assembled, and compared with other P. mirabilis strains isolated from poultry and other sources. Additionally, in silico serogroup analysis was conducted. Results revealed numerous genes unique to the LBUEL-A33 strain. No function in cellulitis was identified for these genes, and in silico investigation of the virulence potential of LBUEL-A33's exclusive proteins proved inconclusive. These findings support that multiple factors are necessary for P. mirabilis to cause avian cellulitis. Furthermore, this species likely employs its own unique arsenal of virulence factors, as many identified mechanisms are analogous to those of E. coli. While antigenic gene clusters responsible for serogroups were identified, no clear trend was observed, and the gene cluster of LBUEL-A33 did not show homology with any sequenced Proteus serogroups. These results reinforce the understanding that this disease is multifactorial, necessitating further research to unravel the mechanisms and underpin the development of control and prevention strategies.
Collapse
Affiliation(s)
- Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - João Paulo de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Beatriz Lernic Schoeps
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Mario Gabriel Lopes Barbosa
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | | | - Sérgio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil.
| |
Collapse
|
2
|
Ramatla T, Ramaili T, Lekota K, Mileng K, Ndou R, Mphuthi M, Khasapane N, Syakalima M, Thekisoe O. Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. Vet Med Sci 2024; 10:e1371. [PMID: 38357843 PMCID: PMC10867704 DOI: 10.1002/vms3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
- Gastrointestinal Research UnitDepartment of SurgerySchool of Clinical MedicineUniversity of the Free StateBloemfonteinSouth Africa
| | - Taole Ramaili
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Rendani Ndou
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Malekoba Mphuthi
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Ntelekwane Khasapane
- Department of Life SciencesCentre for Applied Food Safety and BiotechnologyCentral University of TechnologyBloemfonteinSouth Africa
| | - Michelo Syakalima
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
- Department of Disease ControlSchool of Veterinary MedicineUniversity of ZambiaLusakaZambia
| | - Oriel Thekisoe
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
3
|
Isolation, characterization and antibiotic resistance of Proteus mirabilis from Belgian broiler carcasses at retail and human stool. Food Microbiol 2020; 96:103724. [PMID: 33494897 DOI: 10.1016/j.fm.2020.103724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
Proteus mirabilis is an important pathogen involved in human urinary tract infections, and also more isolated from stools of patients with diarrheal disease than from healthy patients. The role of food, especially poultry products as source for human infection and multi-resistant strains remains unclear. As a resident in broilers' intestines, P. mirabilis can contaminate broiler carcasses due to slaughter practices, and be a risk for human infection. The present study evaluated the performance of five isolation media, and subsequently examined the presence of P. mirabilis on broiler carcasses at retail. Additionally, isolates were characterized by the Dienes' test, repetitive element PCR fingerprinting and pulsed-field gel electrophoresis, and their antibiotic resistance profile determined. Using a combined isolation protocol on blood agar, xylose lysine deoxycholate agar and violet red bile glucose agar, P. mirabilis was isolated from 29 out of 80 broiler carcasses (36.25%) with a mean contamination level of 2.25 ± 0.50 log10 CFU/g. A high strain heterogeneity was present in isolates from broilers and human stool. The same strains were not shared, but the antibiotic resistance profiling was similar. A role of poultry products as source for human infection should be taken into account.
Collapse
|
4
|
Proteus mirabilis causing cellulitis in broiler chickens. Braz J Microbiol 2020; 51:1353-1362. [PMID: 32067208 DOI: 10.1007/s42770-020-00240-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
Given the need to understand the virulence profile of Proteus mirabilis isolates from cellulitis in broiler chickens and their ability to cause lesions, the present study aimed to characterize genotypically and phenotypically the virulence profiles of two strains of P. mirabilis isolated from cellulitis in broilers, as well as to evaluate their ability to experimentally reproduce the lesions in vivo. The strain with the highest virulence potential (LBUEL-A33) possessed mrpA, pmfA, ucaA, atfA (fimbriae), zapA, ptA (proteases), hpmA (hemolysin), and ireA (siderophore) genes, formed a very strong biofilm, and expressed the pattern of aggregative adhesion and cytotoxicity in Vero cells. The strain with the lowest virulence potential (LBUEL-A34) did not present the pmfA and ucaA genes, but expressed the pattern of aggregative adhesion, formed a strong biofilm, and did not show cytotoxicity. Both strains developed cellulitis in an animal model within 24 h post-inoculation (PI), and the degree of lesions was not significantly altered up to 120 h PI. The LBUEL-A33 strain was also inoculated in combination with an avian pathogenic Escherichia coli (APEC 046), and the lesions showed no significant changes from the individual inoculation of these two strains. Histological analysis showed that the LBUEL-A33 strain developed characteristic cellulitis lesions. Thus, both strains of P. mirabilis isolated in our study have several virulence factors and the ability to develop cellulitis in broilers.
Collapse
|