1
|
Jangra A, Kumar K, Maikhuri S, Bhandari MS, Pandey S, Singh H, Barthwal S. Unveiling stress-adapted endophytic bacteria: Characterizing plant growth-promoting traits and assessing cross-inoculation effects on Populus deltoides under abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108610. [PMID: 38615447 DOI: 10.1016/j.plaphy.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
In the face of the formidable environmental challenges precipitated by the ongoing climate change, Plant Growth-Promoting Bacteria (PGPB) are gaining widespread acknowledgement for their potential as biofertilizers, biocontrol agents, and microbial inoculants. However, a knowledge gap pertains to the ability of PGPB to improve stress tolerance in forestry species via cross-inoculation. To address this gap, the current investigation centres on PGPBs, namely, Acinetobacter johnsonii, Cronobacter muytjensii, and Priestia endophytica, selected from the phyllosphere of robust and healthy plants thriving in the face of stress-inducing conditions. These strains were selected based on their demonstrated adaptability to saline, arid, and nitrogen-deficient environments. The utilization of PGPB treatment resulted in an improvement of stomatal conductance (gs) and transpiration rate (E) in poplar plants exposed to both salt and drought stress. It also induced an increase in essential biochemical components such as proline (PRO), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). These reactions were accompanied by a decrease in leaf malonaldehyde (MDA) content and electrolyte leakage (EL). Furthermore, the PGPB treatment demonstrated a notable enhancement in nutrient absorption, particularly nitrogen and carbon, achieved through the solubilization of nutrients. The estimation of canopy temperature via thermal imaging proved to be an efficient method for distinguishing stress reactions in poplar than conventional temperature recording techniques. In summation, the utilization of PGPB especially Cronobacter muytjensii in this study, yielded profound improvements in the stress tolerance of poplar plants, manifesting in reduced membrane lipid peroxidation, enhanced photosynthesis, and bolstered antioxidant capacity within the leaves.
Collapse
Affiliation(s)
- Anamika Jangra
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Kishan Kumar
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Sandeep Maikhuri
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 195, Uttarakhand, India.
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Hukum Singh
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Santan Barthwal
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| |
Collapse
|
2
|
Arbuscular mycorrhizal fungi and humic substances increased the salinity tolerance of rice plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
de Abreu CEB, Araújo GDS, Monteiro-Moreira ACDO, Costa JH, Leite HDB, Moreno FBMB, Prisco JT, Gomes-Filho E. Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance. PLANT CELL REPORTS 2014; 33:1289-1306. [PMID: 24770441 DOI: 10.1007/s00299-014-1616-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC-ESI-MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.
Collapse
Affiliation(s)
- Carlos Eduardo Braga de Abreu
- Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceará, CP 6039, Fortaleza, CE, 60440-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yin Y, Yang R, Gu Z. Calcium regulating growth and GABA metabolism pathways in germinating soybean (Glycine max L.) under NaCl stress. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2214-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Thiam M, Champion A, Diouf D, Ourèye Sy M. NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars. ISRN BIOTECHNOLOGY 2013; 2013:382417. [PMID: 25937976 PMCID: PMC4393035 DOI: 10.5402/2013/382417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of 15 cowpea cultivars, at germination stage. The seed germination process consisted of sowing them in agarified water (8 g·L(-1)) supplemented with 6 different concentrations of NaCl (0, 10, 50, 100, 150, and 200 mM). Results highlighted that high salt concentrations drastically reduced germination and significantly delayed the process for all varieties. A cowpea varietal effect towards the salt tolerance was noticed. Genotypes Diongoma, 58-78, and 58-191 were more salt-tolerant cultivars while Mougne and Yacine were more salt-sensitive ones as confirmed in the three groups of the dendrogram. NaCl effects on the early vegetative growth of seedlings were assessed with a tolerant (58-191) and a susceptible (Yacine) cultivar. Morphological (length and dry biomass) and physiological (chlorophyll and proline contents) parameter measurements revealed a negative effect of high (NaCl). However, 58-191 was much more salt tolerant, and the chlorophyll and proline contents were higher than those of Yacine genotype at increasing salt concentrations.
Collapse
Affiliation(s)
- Mahamadou Thiam
- Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), LCM, Centre de Recherche de Bel Air, BP 1386, Dakar 18524, Senegal ; Institut de Recherche pour le Développement (IRD), UMR DIADE, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal
| | - Mame Ourèye Sy
- Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal
| |
Collapse
|
7
|
Lacerda CF, Assis Júnior JO, Lemos Filho LCA, Oliveira TSD, Guimarães FV, Gomes-Filho E, Prisco JT, Bezerra MA. Morpho-physiological responses of cowpea leaves to salt stress. ACTA ACUST UNITED AC 2006. [DOI: 10.1590/s1677-04202006000400003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of salt stress of known intensity and duration on morpho-physiological changes in leaves of different ages from cowpea [Vigna unguiculata (L.) Walp.] plants was studied, aiming for a better understanding of the acclimation process of the whole-plant. Seeds were sown in vermiculite and seedlings were transferred to plastic trays containing aerated nutrient solution, and kept in a greenhouse. When the first trifoliate leaf emerged the seedlings were transplanted into 3 L plastic pots containing aerated nutrient solution. Salt additions started 5 d later, and the salt-treated plants received 25 mmol L-1 per day until reaching a final concentration of 75 mmol L-1. During the experimental period primary leaves and the 1st, 2nd, and 3rd trifoliate leaves were used for measurements of net photosynthesis, leaf area, leaf succulence, specific leaf mass, ions and chlorophyll concentrations. Growth analysis of the whole-plant was performed at the end of the experimental period. Salinity did not affect net photosynthesis, but reduced dry mass production and the number of lateral branches. Leaf concentrations of Na+, Cl-, K+ and P increased in salt-stressed plants, but these responses were dependent upon stress duration and leaf age. The higher concentration of potentially toxic ions (Na+ and Cl-) in older leaves could contribute to the reduced ion accumulation in growing tissues, but the tendency of K and P accumulation in leaves appeared to be the result of reduced re-translocation, i.e., not related to plant acclimation. Salinity also increased the source/sink ratio, leaf succulence, specific leaf mass, and chlorophyll accumulation per unit of leaf area, suggesting that the observed changes could be part of an integrated mechanism of whole-plant acclimation to salt stress.
Collapse
|
8
|
Abstract
This work aimed to evoluate physiological response of cowpea (Vigna unguiculata L. Walp) seeds submitted to salt stress. Seeds of cultivars 'Epace-10'; 'Canapu' and 'Pitiúba' of cowpea, were submitted to germination test in germinator at 25(0)C, in "germitest" papers imbibed in distilled water or in 0, 10, 50, 100 and 200mol m-3 NaCl solutions. At the first and second counting of the germination test, normal seedlings were accounted, weighted and dried, obtaining data for vigor, total germination, fresh matter weight and dry matter weight. The seedlings hypocotyls, root and total length were measured total proteins content in cotyledons were obtained from germinating seeds. The presence of salt at concentrations higher than 50mol m-3 NaCl affect the germination, seedlings growth and cotyledons total protein synthesis of all cowpea cultivars. The seeds of cultivar pitiúba were is more tolerant to salinity, than the cultivars Canapu and Epace-10.
Collapse
|