1
|
Badilli U, Inal O. Current Approaches in Cosmeceuticals: Peptides, Biotics and Marine Biopolymers. Polymers (Basel) 2025; 17:798. [PMID: 40292641 PMCID: PMC11946782 DOI: 10.3390/polym17060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Today's consumer perception and expectations of personal care have gone beyond merely cleansing, moisturizing, and makeup products, focusing more on the reduction or elimination of signs of aging. Cosmeceuticals, developed to create a more youthful appearance, commonly contain substances with therapeutic and physiological effects. The development of cosmeceutical products containing peptides, biotic ingredients, and marine-based compounds has become a highly popular strategy to enhance anti-aging effects and better address consumer demands. Peptides are frequently used in anti-aging products due to their effects on enhancing fibroblast proliferation and collagen synthesis, contributing to the skin's barrier function, and reducing skin pigmentation. Meanwhile, biotic components are extensively evaluated for their potential to improve barrier function by maintaining the balance of the skin microflora. On the other hand, the increasing interest of cosmetic consumers in natural and eco-friendly products, along with the rich biodiversity in the oceans and seas, has made marine-derived substances highly significant for the cosmetic industry. Marine polysaccharides are particularly valuable as biopolymers, offering useful properties for gel formation in cosmetic formulations. This review discusses scientific studies and commercially available products using peptides, biotic and marine-based compounds in cosmetic formulations, their cosmetic and cosmeceutical benefits, and the challenges in the formulation design of these products.
Collapse
Affiliation(s)
| | - Ozge Inal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
| |
Collapse
|
2
|
He Q, Liao Y, Wu Y, Zhang H, Long X, Zhang Y. Bioactive oligopeptides and the application in skin regeneration and rejuvenation. J Appl Biomater Funct Mater 2025; 23:22808000251330974. [PMID: 40269538 DOI: 10.1177/22808000251330974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Oligopeptides, composed of 2-10 amino acid residues, are protein fragments with unique structural characteristics, including small molecular size, high biocompatibility, and modifiable functional groups. These features endow oligopeptides with excellent permeability, safety, and versatile biological activities, making them widely applicable in disease treatment, drug delivery, and skincare. In particular, oligopeptides have emerged as advanced ingredients in skincare, offering anti-aging, anti-wrinkle, and whitening effects by regulating key biological processes such as collagen synthesis, antioxidant defense, and melanin production. This review comprehensively discusses the structural properties, functional mechanisms, and diverse applications of oligopeptides and their derivatives, highlighting their potential in skin regeneration, rejuvenation, and anti-aging medicine. By providing insights into the latest advancements, this review aims to serve as a valuable reference for future research and development in oligopeptide-based therapeutics and skincare innovations.
Collapse
Affiliation(s)
- Qiulin He
- Hangzhou Singclean Medical Products Co., Ltd, Hangzhou, China
| | - Youguo Liao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaru Wu
- Hangzhou Singclean Medical Products Co., Ltd, Hangzhou, China
| | - Huahui Zhang
- Department of Plastic and Cosmetic, Zhejiang Hospital, Hangzhou, China
| | - Xiaohui Long
- Department of Plastic and Cosmetic, Zhejiang Hospital, Hangzhou, China
| | - Yuxiang Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
3D Printed Hollow Microneedles for Treating Skin Wrinkles Using Different Anti-Wrinkle Agents: A Possible Futuristic Approach. COSMETICS 2023. [DOI: 10.3390/cosmetics10020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Skin wrinkles are an inevitable phenomenon that is brought about by aging due to the degradation of scleroprotein fibers and significant collagen reduction, which is the fundamental basis of anti-wrinkle technology in use today. Conventional treatments such as lasering and Botulinum toxin have some drawbacks including allergic skin reactions, cumbersome treatment procedures, and inefficient penetration of the anti-wrinkle products into the skin due to the high resistance of stratum corneum. Bearing this in mind, the cosmetic industry has exploited the patient-compliant technology of microneedles (MNs) to treat skin wrinkles, developing several products based on solid and dissolvable MNs incorporated with antiwrinkle formulations. However, drug administration via these MNs is limited by the high molecular weight of the drugs. Hollow MNs (HMNs) can deliver a wider array of active agents, but that is a relatively unexplored area in the context of antiwrinkle technology. To address this gap, we discuss the possibility of bioinspired 3D printed HMNs in treating skin wrinkles in this paper. We compare the previous and current anti-wrinkling treatment options, as well as the techniques and challenges involved with its manufacture and commercialization.
Collapse
|
4
|
Mostafavi Yazdi SJ, Baqersad J. Mechanical modeling and characterization of human skin: A review. J Biomech 2021; 130:110864. [PMID: 34844034 DOI: 10.1016/j.jbiomech.2021.110864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
This paper reviews the advances made in recent years on modeling approaches and experimental techniques to characterize the mechanical properties of human skin. The skin is the largest organ of the human body that has a complex multi-layered structure with different mechanical behaviors. The mechanical properties of human skin play an important role in distinguishing between healthy and unhealthy skin. Furthermore, knowing these mechanical properties enables computer simulation, skin research, clinical studies, as well as diagnosis and treatment monitoring of skin diseases. This paper reviews the recent efforts on modeling skin using linear, nonlinear, viscoelastic, and anisotropic materials. The work also focuses on aging effects, microstructure analysis, and non-invasive methods for skin testing. A detailed explanation of the skin structure and numerical models, such as finite element models, are discussed in this work. This work also compares different experimental methods that measure the mechanical properties of human skin. The work reviews the experimental results in the literature and shows how the mechanical properties of human skin vary with the skin sites, the layers, and the structure of human skin. The paper also discusses how state-of-the-art technology can advance skin research.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mostafavi Yazdi
- NVH and Experimental Mechanics Laboratory, Department of Mechanical Engineering, Kettering University, 1700 University Ave, Flint, MI 48504, USA.
| | - Javad Baqersad
- NVH and Experimental Mechanics Laboratory, Department of Mechanical Engineering, Kettering University, 1700 University Ave, Flint, MI 48504, USA
| |
Collapse
|
5
|
Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8080125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bioactive peptides are gaining more and more popularity in the research and development of cosmetic products with anti-aging effect. Acetyl hexapeptide-8 is a hydrophilic peptide incorporated in cosmetics to reduce the under-eye wrinkles and the forehead furrows. Hydrophilic interaction liquid chromatography (HILIC) is the separation technique of choice for analyzing peptides. In this work, a rapid HILIC method coupled to photodiode array detection operated at 214 nm was developed, validated and used to determine acetyl-hexapeptide-8 in cosmetics. Chromatography was performed on a Xbridge® HILIC BEH analytical column using as mobile phase a 40 mM ammonium formate water solution (pH 6.5)-acetonitrile mixture 30:70, v/v at flow rate 0.25 mL min−1. The assay was linear over the concentration range 20 to 30 μg mL−1 for the cosmetic formulations and 0.004 to 0.007% (w/w) for the cosmetic cream. The limits of quantitation for acetyl hexapeptide-8 were 1.5 μg mL−1 and 0.002% (w/w) for the assay of cosmetic formulations and cosmetic creams, respectively. The method was applied to the analysis of cosmetic formulations and anti-wrinkle cosmetic creams.
Collapse
|
6
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
7
|
Prokopová A, Pavlačková J, Mokrejš P, Gál R. Collagen Hydrolysate Prepared from Chicken By-Product as a Functional Polymer in Cosmetic Formulation. Molecules 2021; 26:molecules26072021. [PMID: 33916274 PMCID: PMC8037141 DOI: 10.3390/molecules26072021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Chicken stomachs can be processed into collagen hydrolysate usable in cosmetic products. The aim of the study was to verify the effects of a carbopol gel formulation enriched with 1.0% (w/w) chicken hydrolysate on the properties of the skin in the periorbital area after regular application twice a day for eight weeks in volunteers ageed 50 ± 9 years. Skin hydration, transepidermal water loss (TEWL), skin elasticity and skin relief were evaluated. Overall, skin hydration increased by 11.82% and 9.45%, TEWL decreased by 25.70% and 17.80% (always reported for the right and left area). Generally, there was an increase in skin elasticity, a decrease in skin roughness, as the resonance times decreased by 85%. The average reduction of wrinkles was 35.40% on the right and 41.20% on the left. For all results, it can be seen that the longer the cosmetic gel formulation is applied, the better the results. Due to the positive effect on the quality and functionality of the skin, it is possible to apply the cosmetic gel formulation in the periorbital area. The advantage of the product with chicken collagen hydrolysate is also the biocompatibility with the skin and the biodegradability of the formulation.
Collapse
Affiliation(s)
- Aneta Prokopová
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic;
- Correspondence: ; Tel.: +420-576-031-230
| | - Jana Pavlačková
- Department of Lipids, Detergents and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic;
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic;
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic;
| |
Collapse
|
8
|
Abstract
The development of synthetic peptides for skin care dates to the 1980s. The cosmetic industry periodically launches new peptides, as they are promising and appealing active ingredients in the growing and innovative cosmetics market. In this study, trends in the use of peptides in anti-aging products were analyzed by comparing the composition of the products marketed in 2011 with products launched or reformulated in 2018. The scientific and marketing evidence for their application as active ingredients in anti-aging cosmetics was also compiled from products’ labels, suppliers’ technical data forms and online scientific databases. The use of peptides in anti-aging cosmetics increased by 7.2%, while the variety and the number of peptide combinations in products have increased by 88.5%. The most used peptides in antiaging cosmetic formulations are, in descending order, Palmitoyl Tetrapeptide-7, Palmitoyl Oligopeptide and Acetyl Hexapeptide-8. In 2011, the majority of peptides were obtained from synthesis, while in 2018, biotechnology processing was the dominant source. This study provides an overview of the market trends regarding the use of peptides in anti-aging products, providing meaningful data for scientists involved in the development of new peptides to identify opportunities for innovation in this area.
Collapse
|
9
|
Errante F, Ledwoń P, Latajka R, Rovero P, Papini AM. Cosmeceutical Peptides in the Framework of Sustainable Wellness Economy. Front Chem 2020; 8:572923. [PMID: 33195061 PMCID: PMC7662462 DOI: 10.3389/fchem.2020.572923] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Among the many aspects that contribute to the wellness of each individual, healthy and younger-looking skin play a relevant role, as clearly shown by the important growth of the skin-care products market observed in recent years. In this scenario, the field of cosmeceuticals appears particularly promising, being based on cosmetic products containing active ingredients. Among these, several peptides were proposed for cosmeceutical applications, thanks to their specific interaction with biological targets. In this mini-review, we report some of the most investigated and used peptides for cosmetic formulations, taking into account that cosmeceutical peptides are basically divided into three main categories (i.e., neurotransmitter inhibitors, carriers, and signal peptides). Special attention was payed to the scientific studies supporting the claimed biological activity of these peptides, as a fundamental aspect that should underpin the growth of this field in the framework of a sustainable wellness economy.
Collapse
Affiliation(s)
- Fosca Errante
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy.,Espikem S.r.l., Prato, Italy
| | - Patrycja Ledwoń
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy.,Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Firenze, Italy.,PeptLab@UCP and CY Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise, France
| |
Collapse
|
10
|
Ahsan H. Immunopharmacology and immunopathology of peptides and proteins in personal products. J Immunoassay Immunochem 2019; 40:439-447. [PMID: 31204576 DOI: 10.1080/15321819.2019.1629590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The beneficial effects promoted from the use of biomolecular substances into the formulations of personal care products are considered useful ingredients in cosmetic and therapeutic applications. Innovations in cosmetics are based on new bioactive formulations such as vitamins, oils, peptides, and protein hydrolysates. In skin care, the monomeric amino acids such as serine, threonine, alanine are common ingredients in cosmetics as they function as natural moisturizing factors which act as water-binding molecules. Amino acids and their salts e.g., arginine, glycine, etc. are also used as hair- and skin-conditioning agents in cosmetic formulations. The peptides are composed of short chain of amino acids and are used in cosmetics due to their numerous pathophysiological properties including anti-aging. There is growing interest in bioactive peptides in products for stimulating collagen and elastin synthesis in skin and improve surface healing. The main benefit of using proteins in cosmeceuticals is to improve the hydration of skin. Proteins increase the dehydration in the skin which helps to reduce wrinkles and improves the functions of the skin barrier. This review article describes the peptides, proteins that are most frequently used in cosmeceuticals and their potential benefits and practical use in cosmetic science and skincare.
Collapse
Affiliation(s)
- Haseeb Ahsan
- a Department of Biochemistry, Faculty of Dentistry , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
11
|
Abstract
Peptides found in skin can act by different mechanisms of action, being able to function as epidermal or nervous growth factors or even as neurotransmitters. Due to the vast functionality of these compounds, there is growing research on bioactive peptides aimed at investigating their uses in products developed for stimulating collagen and elastin synthesis and improving skin healing. Thus, a literature search on applications of the most common bioactive peptides used in cosmeceuticals was carried out. There is a lack of proper reviews concerning this topic in scientific literature. Nine peptides with specific actions on body and facial dysfunctions were described. It could be noted while searching scientific literature that studies aimed at investigating peptides which prevent aging of the skin are overrepresented. This makes searching for peptides designed for treating other skin dysfunctions more difficult. The use of biomimetic peptides in cosmetic formulations aimed at attenuating or preventing different types of skin dysfunctions is a topic where information is still lackluster. Even though research on these compounds is relatively common, there is still a need for more studies concerning their practical uses so their mechanisms of action can be fully elucidated, as they tend to be quite complex.
Collapse
|