1
|
Kassab AE. N-Acylhydrazone Pharmacophore's Analgesic and Anti-inflammatory Profile: Recent Advancements during the Past Ten Years. Curr Pharm Des 2024; 30:333-351. [PMID: 38303528 DOI: 10.2174/0113816128282470240117072322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Due to its important biological and pharmacological properties, in the field of medicinal chemistry and drug discovery, the N-acylhydrazone motif has shown to be extremely adaptable and promising. This scaffold has become a crucial component in the synthesis of numerous bioactive agents. N-Acylhydrazones are also interesting biological and synthetic tools due to their easy and straightforward synthesis. The current review provides a summary of the analgesic and anti-inflammatory activities of N-acylhydrazone derivatives over the past ten years. A brief discussion of structure-activity relationships is also provided which may guide researchers in medicinal chemistry to develop derivatives based on N-acylhydrazone scaffold as potent anti-inflammatory candidates.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Kassab AE. Anticancer agents incorporating the N-acylhydrazone scaffold: Progress from 2017 to present. Arch Pharm (Weinheim) 2023; 356:e2200548. [PMID: 36638264 DOI: 10.1002/ardp.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023]
Abstract
The N-acylhydrazone motif has been shown to be particularly adaptable and promising in the area of medicinal chemistry and drug development, due to its significant biological and pharmacological characteristics. Moreover, N-acylhydrazones are appealing synthetic and biological tools because of their simple and straightforward synthesis. This scaffold has emerged as a fundamental building block for the synthesis of bioactive compounds. Particularly, the N-acylhydrazone scaffold served as a base for the synthesis of a number of potent anticancer agents acting via different mechanisms. An updated summary of the anticancer activity of N-acylhydrazone derivatives described in the literature (from 2017 to 2022) is provided in the current review. It discusses the structure-activity relationship (SAR) of N-acylhydrazone derivatives exhibiting anticancer potential, which could be helpful in designing and developing new derivatives as effective antiproliferative candidates in the future.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Belyaeva ER, Myasoedova YV, Ishmuratova NM, Ishmuratov GY. Synthesis and Biological Activity of N-Acylhydrazones. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Kumar S, Ritika. A brief review of the biological potential of indole derivatives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00141-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Various bioactive aromatic compounds containing the indole nucleus showed clinical and biological applications. Indole scaffold has been found in many of the important synthetic drug molecules which gave a valuable idea for treatment and binds with high affinity to the multiple receptors helpful in developing new useful derivatives.
Main text
Indole derivatives possess various biological activities, i.e., antiviral, anti-inflammatory, anticancer, anti-HIV, antioxidant, antimicrobial, antitubercular, antidiabetic, antimalarial, anticholinesterase activities, etc. which created interest among researchers to synthesize a variety of indole derivatives.
Conclusion
From the literature, it is revealed that indole derivatives have diverse biological activities and also have an immeasurable potential to be explored for newer therapeutic possibilities.
Collapse
|
5
|
Chen GQ, Xia YF, Yang JM, Che ZP, Sun D, Li S, Tian YE, Liu SM, Jiang J, Lin XM. Controlled synthesis of N, N-dimethylarylsulfonamide derivatives as nematicidal agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1197-1206. [PMID: 31773971 DOI: 10.1080/10286020.2019.1694513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Gramine can be intelligently and efficiently supplied with N, N-dimethylamino group and then reacted with the corresponding sulfonyl chlorides to synthesize N, N-dimethylarylsulfonamides. We herein designed and controlled synthesis of N, N-dimethylarylsulfonamide derivatives, and first reported the results of the nematicidal activity of 15 title compounds 3a-o against Meloidogyne incongnita in vitro, respectively. Among all of the title derivatives, compounds 3a, 3c, 3k, and 3o exhibited potent nematicidal activity with median lethal concentration (LC50) values ranging from 0.22 to 0.26 mg/L. Most noteworthy, N, N-dimethyl-4-methoxyphenylsulfonamide (3c) and N, N-dimethyl-8-quinolinesulfonamide (3o) showed the best promising and pronounced nematicidal activity, with LC50 values of 0.2381 and 0.2259 mg/L, respectively.
Collapse
Affiliation(s)
- Gen-Qiang Chen
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Yan-Fei Xia
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Jin-Ming Yang
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Zhi-Ping Che
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Di Sun
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Shen Li
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Yue-E Tian
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Sheng-Ming Liu
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Jia Jiang
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiao-Min Lin
- Laboratory of Pharmaceutical Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
6
|
Horishny V, Kartsev V, Matiychuk V, Geronikaki A, Anthi P, Pogodin P, Poroikov V, Ivanov M, Kostic M, Soković MD, Eleftheriou P. 3-Amino-5-(indol-3-yl)methylene-4-oxo-2-thioxothiazolidine Derivatives as Antimicrobial Agents: Synthesis, Computational and Biological Evaluation. Pharmaceuticals (Basel) 2020; 13:ph13090229. [PMID: 32883028 PMCID: PMC7559366 DOI: 10.3390/ph13090229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022] Open
Abstract
Herein we report the design, synthesis, computational, and experimental evaluation of the antimicrobial activity of fourteen new 3-amino-5-(indol-3-yl) methylene-4-oxo-2-thioxothiazolidine derivatives. The structures were designed, and their antimicrobial activity and toxicity were predicted in silico. All synthesized compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin and (for the majority of compounds) streptomycin. The most sensitive bacterium was S. aureus (American Type Culture Collection ATCC 6538), while L. monocytogenes (NCTC 7973) was the most resistant. The best antibacterial activity was observed for compound 5d (Z)-N-(5-((1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)-4-hydroxybenzamide (Minimal inhibitory concentration, MIC at 37.9–113.8 μM, and Minimal bactericidal concentration MBC at 57.8–118.3 μM). Three most active compounds 5d, 5g, and 5k being evaluated against three resistant strains, Methicillin resistant Staphilococcus aureus (MRSA), P. aeruginosa, and E. coli, were more potent against MRSA than ampicillin (MIC at 248–372 μM, MBC at 372–1240 μM). At the same time, streptomycin (MIC at 43–172 μM, MBC at 86–344 μM) did not show bactericidal activity at all. The compound 5d was also more active than ampicillin towards resistant P. aeruginosa strain. Antifungal activity of all compounds exceeded those of the reference antifungal agents bifonazole (MIC at 480–640 μM, and MFC at 640–800 μM) and ketoconazole (MIC 285–475 μM and MFC 380–950 μM). The best activity was exhibited by compound 5g. The most sensitive fungal was T. viride (IAM 5061), while A. fumigatus (human isolate) was the most resistant. Low cytotoxicity against HEK-293 human embryonic kidney cell line and reasonable selectivity indices were shown for the most active compounds 5d, 5g, 5k, 7c using thiazolyl blue tetrazolium bromide MTT assay. The docking studies indicated a probable involvement of E. coli Mur B inhibition in the antibacterial action, while CYP51 inhibition is likely responsible for the antifungal activity of the tested compounds.
Collapse
Affiliation(s)
- Volodymyr Horishny
- Department of Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
| | - Victor Kartsev
- InterBioScreen, 142432 Chernogolovka, Moscow Region, Russia;
| | - Vasyl Matiychuk
- Department of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodia 6, 79005 Lviv, Ukraine;
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-23-1099-7616
| | - Petrou Anthi
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pavel Pogodin
- Institute of Biomedical Chemistry, Pogodinskaya Street 10 Bldg.8, 119121 Moscow, Russia; (P.P.); (V.P.)
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10 Bldg.8, 119121 Moscow, Russia; (P.P.); (V.P.)
| | - Marija Ivanov
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša, Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.D.S.)
| | - Marina Kostic
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša, Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.D.S.)
| | - Marina D. Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša, Stanković-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.D.S.)
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Sindos, 57400 Thessaloniki, Greece;
| |
Collapse
|