1
|
Xu Y, Chen A, Wu J, Wan Y, You M, Gu X, Guo H, Tan S, He Q, Hu B. Nanomedicine: An Emerging Novel Therapeutic Strategy for Hemorrhagic Stroke. Int J Nanomedicine 2022; 17:1927-1950. [PMID: 35530973 PMCID: PMC9075782 DOI: 10.2147/ijn.s357598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yating Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Sengwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Correspondence: Bo Hu; Quanwei He, Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China, Tel +86-27-87542857, Fax +86-27-87547063, Email ;
| |
Collapse
|
2
|
Rehni AK, Shukla V, Navarro Quero H, Bidot C, Haase CR, Crane EAA, Patel SG, Koch S, Ahn YS, Jy W, Dave KR. Preclinical Evaluation of Safety and Biodistribution of Red Cell Microparticles: A Novel Hemostatic Agent. J Cardiovasc Pharmacol Ther 2019; 24:474-483. [PMID: 31035782 DOI: 10.1177/1074248419838512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Uncontrollable bleeding is a major cause of mortality and morbidity worldwide. Effective hemostatic agents are urgently needed. Red cell microparticles (RMPs) are a highly promising hemostatic agent. This study evaluated the safety profile of RMPs preliminary to clinical trial. METHODS AND RESULTS RMPs were prepared from type O+ human red blood cell by high-pressure extrusion. Male rats were treated with RMPs either a 1 × bolus, or 4 × or 20 × administered over 60 minutes. The vehicle-treated group was used as a control. Effects on physiological parameters were evaluated; namely, blood pressure, body and head temperature, hematocrit, and blood gases. We did not observe any adverse effects of RMPs on these physiological parameters. In addition, brain, heart, and lungs of rats treated with 4 × dose (bolus followed by infusion over 60 minutes) or vehicle were examined histologically for signs of thrombosis or other indications of toxicity. No thrombosis or indications of toxicity in brain, heart, or lungs were observed. Studies revealed that RMPs were distributed mainly in liver, spleen, and lymph nodes, and were potentially excreted through the kidneys. CONCLUSIONS Our study indicates that RMP administration appears not to have any negative impact on the parameters studied and did not produce thrombosis in heart, brain, and lungs. However, more detailed long-term studies confirming the safety of RMP as a hemostatic agent are warranted.
Collapse
Affiliation(s)
- Ashish K Rehni
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vibha Shukla
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hever Navarro Quero
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos Bidot
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Conner R Haase
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ensign Anise A Crane
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shivam G Patel
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian Koch
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yeon S Ahn
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wenche Jy
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.,4 Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
The Distribution of Transplanted Umbilical Cord Mesenchymal Stem Cells in Large Blood Vessel of Experimental Design With Traumatic Brain Injury. J Craniofac Surg 2018; 28:1615-1619. [PMID: 28863113 DOI: 10.1097/scs.0000000000003563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The authors aim to track the distribution of human umbilical cord mesenchymal stem cells (MSCs) in large blood vessel of traumatic brain injury -rats through immunohistochemical method and small animal imaging system. After green fluorescent protein (GFP) gene was transfected into 293T cell, virus was packaged and MSCs were transfected. Mesenchymal stem cells containing GFP were transplanted into brain ventricle of rats when the infection rate reaches 95%. The immunohistochemical and small animal imaging system was used to detect the distribution of MSCs in large blood vessels of rats. Mesenchymal stem cells could be observed in large vessels with positive GFP expression 10 days after transplantation, while control groups (normal group and traumatic brain injury group) have negative GFP expression. The vascular endothelial growth factor in transplantation group was higher than that in control groups. The in vivo imaging showed obvious distribution of MSCs in the blood vessels of rats, while no MSCs could be seen in control groups. The intravascular migration and homing of MSCs could be seen in rats received MSCs transplantation, and new angiogenesis could be seen in MSCs-transplanted blood vessels.
Collapse
|
4
|
O'Carroll CB, Aguilar MI. Management of Postthrombolysis Hemorrhagic and Orolingual Angioedema Complications. Neurohospitalist 2015; 5:133-41. [PMID: 26288671 DOI: 10.1177/1941874415587680] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intravenous recombinant tissue plasminogen activator was first approved for the treatment of acute ischemic stroke in the United States in 1996. Thrombolytic therapy has been proven to be effective in acute ischemic stroke treatment and shown to improve long-term functional outcomes. Its use is associated with an increased risk of symptomatic intracerebral hemorrhage as well as orolingual angioedema. Our goal is to outline the management strategies for these postthrombolysis complications.
Collapse
Affiliation(s)
- Cumara B O'Carroll
- Department of Neurology, Division of Cerebrovascular Diseases, Mayo Clinic, Phoenix, AZ, USA
| | - Maria I Aguilar
- Department of Neurology, Division of Cerebrovascular Diseases, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
5
|
The fibrinolytic system-more than fibrinolysis? Transfus Med Rev 2014; 29:102-9. [PMID: 25576010 DOI: 10.1016/j.tmrv.2014.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 01/05/2023]
Abstract
The fibrinolytic system, known for its ability to regulate the activation of the zymogen plasminogen into active plasmin, has been primarily associated with the removal of fibrin and blood clots. Tissue-type plasminogen activator, the most well-recognized plasminogen activator, was harnessed for therapeutic benefit against thromboembolic disorders more than 30 years ago, whereas inhibition of this system has been proven effective for certain bleeding disorders. However, in recent years, new and unexpected functional roles for this system have been identified mostly in relation to the central nervous system that are both unrelated and independent of fibrin degradation and clot removal. Hence, it seems reasonable to ask whether agents used to modify components or activities of the fibrinolytic system have any clinical consequences unrelated to their intended use in hemostasis. This review will provide an overview of these new features of the fibrinolytic system and will also focus on prospective considerations in the use of fibrinolytic and antifibrinolytic agents.
Collapse
|
6
|
Ray B, Keyrouz SG. Management of anticoagulant-related intracranial hemorrhage: an evidence-based review. Crit Care 2014; 18:223. [PMID: 24970013 PMCID: PMC4056075 DOI: 10.1186/cc13889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The increased use of anticoagulants for the prevention and treatment of thromboembolic diseases has led to a rising incidence of anticoagulant-related intracranial hemorrhage (AICH) in the aging western population. High mortality accompanies this form of hemorrhagic stroke, and significant and debilitating long-term consequences plague survivors. Although management guidelines for such hemorrhages are available for the older generation anticoagulants, they are still lacking for newer agents, which are becoming popular among physicians. Supportive care, including blood pressure control, and reversal of anticoagulation remain the cornerstone of acute management of AICH. Prothrombin complex concentrates are gaining popularity over fresh frozen plasma, and reversal agents for newer anticoagulation agents are being developed. Surgical interventions are options fraught with complications, and are decided on a case-by-case basis. Our current state of understanding of this condition and its management is insufficient. This deficit calls for more population-based studies and therapeutic trials to better evaluate risk factors for, and to prevent and treat AICH.
Collapse
Affiliation(s)
- Bappaditya Ray
- Division of Critical Care Neurology, Department of Neurology, The University of Oklahoma Health Sciences Center, 920 Stanton L Young Blvd, Ste 2040, Oklahoma City, OK 73104, USA
| | - Salah G Keyrouz
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St Louis, MO 63110, USA
| |
Collapse
|
7
|
Hynes BG, Margey RJ, Ruggiero N, Kiernan TJ, Rosenfield K, Jaff MR. Endovascular Management of Acute Limb Ischemia. Ann Vasc Surg 2012; 26:110-24. [DOI: 10.1016/j.avsg.2011.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/24/2011] [Accepted: 05/15/2011] [Indexed: 10/17/2022]
|
8
|
Goldstein JN, Marrero M, Masrur S, Pervez M, Barrocas AM, Abdullah A, Oleinik A, Rosand J, Smith EE, Dzik WH, Schwamm LH. Management of thrombolysis-associated symptomatic intracerebral hemorrhage. ACTA ACUST UNITED AC 2010; 67:965-9. [PMID: 20697046 DOI: 10.1001/archneurol.2010.175] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Symptomatic intracerebral hemorrhage (sICH) is the most devastating complication of thrombolytic therapy for acute stroke. It is not clear whether patients with sICH continue to bleed after diagnosis, nor has the most appropriate treatment been determined. METHODS We performed a retrospective analysis of our prospectively collected Get With the Guidelines-Stroke database between April 1, 2003, and December 31, 2007. Radiologic images and all procoagulant agents used were reviewed. Multivariable logistic regression was performed to identify factors associated with in-hospital mortality. RESULTS Of 2362 patients with acute ischemic stroke during the study period, sICH occurred in 19 of the 311 patients (6.1%) who received intravenous tissue plasminogen activator and 2 of the 72 (2.8%) who received intra-arterial thrombolysis. In-hospital mortality was significantly higher in patients with sICH than in those without (15 of 20 [75.0]% vs 56 of 332 [16.9%], P < .001). Eleven of 20 patients (55.0%) received therapy for coagulopathy: 7 received fresh frozen plasma; 5, cryoprecipitate; 4, phytonadione (vitamin K(1)); 3, platelets; and 1, aminocaproic acid. Independent predictors of in-hospital mortality included sICH (odds ratio, 32.6; 95% confidence interval, 8.8-120.2), increasing National Institutes of Health Stroke Scale score (1.2; 1.1-1.2), older age (1.3; 1.0-1.7), and intra-arterial thrombolysis (2.9; 1.4-6.0). Treatment for coagulopathy was not associated with outcome. Continued bleeding (>33% increase in intracerebral hemorrhage volume) occurred in 4 of 10 patients with follow-up scans available (40.0%). CONCLUSIONS In many patients with sICH after thrombolysis, coagulopathy goes untreated. Our finding of continued bleeding after diagnosis in 40.0% of patients suggests a powerful opportunity for intervention. A multicenter registry to analyze management of thrombolysis-associated intracerebral hemorrhage and outcomes is warranted.
Collapse
Affiliation(s)
- Joshua N Goldstein
- Department of Emergency Medicine, Massachusetts General Hospital, Zero Emerson Place, Ste 3B, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Recombinant factor VIIa and the patient with neurologic bleeding: separating fact from fiction. J Neurosci Nurs 2010; 42:229-34. [PMID: 20804119 DOI: 10.1097/jnn.0b013e3181e26ae7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Notwithstanding its limited Food and Drug Administration-approved indications, rFVIIa has rapidly gained widespread use for the treatment of a variety of hemorrhagic conditions, including intracranial bleeding from spontaneous, traumatic, surgical, and coagulopathic causes. Although it appears that the drug only minimally increases the risk of thromboembolic events, its efficacy remains in question. The idea of finding a universal cure for hemorrhage in a medication bottle remains highly appealing, but enthusiasm for the concept is no replacement for evidence. Neuroscience nurses, who are the interface between patients and rFVIIa, need to balance hope and hype until the facts are all in.
Collapse
|