1
|
Wang M, Zhang Y, Pei F, Liu Y, Zheng Y. Loss of OprD function is sufficient for carbapenem-resistance-only but insufficient for multidrug resistance in Pseudomonas aeruginosa. BMC Microbiol 2025; 25:218. [PMID: 40240992 PMCID: PMC12001449 DOI: 10.1186/s12866-025-03935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) constitutes a serious source of global healthcare-associated infections, and the exploration of its resistance mechanism represents an important approach to address this issue. Because current research on antibiotic resistance predominantly focuses on multidrug-resistant P. aeruginosa which is widely isolated clinically and the resistance mechanism is complicated. CRPA generally has a higher tolerance to other antibiotics than carbapenem-sensitive P. aeruginosa, yet the specific mechanism of resistance remains poorly understood. RESULTS This study delves into the specific antibiotic resistance mechanisms of carbapenem-resistance-only P. aeruginosa (CROPA), a rare kind of pathogen that shows resistance exclusively to carbapenem antibiotics. We collected 11 clinical isolates of CROPA, performed genome sequencing. Our analysis revealed numerous amino acid mutations and premature termination of OprD expression in the CROPA strains. The insertion of IS256 element into OprD in P. aeruginosa was a novel finding. Validation via qPCR and SDS-PAGE affirmed diminished OprD expression levels. Interestingly, common carbapenemases were not detected in our study, and there was no observed upregulation of relevant efflux pumps. The expression of wild-type OprD in CROPA strains restored the sensitivity to carbapenem antibiotics. CONCLUSIONS Compared with previous studies on MDR-CRPA, the emergence of CROPA may be directly linked to changes in OprD, while other resistance mechanisms could contribute to broader antibiotic resistance profiles. By focusing on the antibiotic resistance mechanisms of CROPA, this study illuminates the relationship between specific antibiotic resistance mechanisms and antibiotic resistance, providing a theoretical foundation for guiding clinical treatment and developing novel anti-infective agents.
Collapse
Affiliation(s)
- Maofeng Wang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuxiao Zhang
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fengyan Pei
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Liu
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Masood F, Khan W, Khan I, Khan U, Majid A, Khan SU, Sahin O, Alqathama A, Riaz M, Ahmad R, Alam MM. Exploring the Antibacterial and Antibiofilm Efficacy of Psammogeton biternatum Edgew and Identification of a Novel Quinoline Alkaloid using X-ray Crystallography. ACS OMEGA 2024; 9:43557-43569. [PMID: 39494018 PMCID: PMC11525522 DOI: 10.1021/acsomega.4c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
The prevalence of resistance to harmful human pathogens is steadily rising, emphasizing the urgent need to identify novel antimicrobial compounds. For this purpose, plants stand out as a significant source of bioactives worthy of exploration. Among these, alkaloids, a vast and structurally diverse category of plant secondary metabolites, have emerged as a foundation for crucial antibacterial medications such as metronidazole and the quinolones. In the current work, the crude methanol leaf extract of Psammogeton biternatum Edgew collected from District Bannu, Pakistan, was subjected to TLC (indirect) bioautography and X-ray crystallography for the isolation of potential antibacterial agents. From the crude extract, a novel quinoline alkaloid called quinoline dione ((3R,3aS,5aR)-3,5a,9-trimethyl-3a,4,5,5a-tetrahydro-2H-isoxazolo[2,3-a] quinoline-2,8(3H)-dione (C14H17NO3)) was isolated. The crystal information (M = 247.296 g/mol) is as follows: orthorhombic, P212121, a = 7.7339(14) Å, b = 10.7254(19) Å, c = 15.730(2) Å, V = 1304.8(4) Å3, Z = 4, T = 296 K, μ(Mo Kα) = 0.088 mm-1, ρ calc = 1.259 g/cm3, 13928 reflections measured (5.86° ≤ 2Θ ≤ 51.98°), 2478 unique (R int = 0.1613, R σ = 0.1335). The final R 1 was 0.1098 (I ≥ 2u(I)), and wR 2 was 0.2183. The antibacterial activity for both crude extract of leaves and quinoline dione was determined by a well diffusion method. The quinoline dione alkaloid demonstrated excellent inhibition zones against methicillin-resistant Staphylococcus aureus (18 mm), Bacillus subtills (17 mm), Escherichia coli (20 mm), and Pseudomonas aeruginosa (23 mm) compared to the crude extract. The antibiofilm potential was recorded against Pseudomonas aeruginosa by the 96-well microtiter plate method. A dose-dependent biofilm inhibition response was recorded, which increased with the increase in concentration. Moreover, quinoline dione showed a greater antibiofilm effect as compared to the crude extract, which may be linked to the presence of a particular active functional group positioned on the compound isolated in its pure form. Through in silico studies, i.e., molecular docking, quinoline dione shows strong binding energies with the LasR transcriptional regulator (6MVN) at -9.3 and LasR transcriptional activator (3IX4) at -9.2 kcal/mol, as well as moderate affinities with other targets such as AHL synthase LasI (PDB ID 1RO5) and OprM channel (PDB ID 3D5K), indicating its potential as a quorum sensing inhibitor. Thus, the antibacterial and antibiofilm potential of quinoline dione was confirmed.
Collapse
Affiliation(s)
- Faiza Masood
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Wajiha Khan
- Department
of Environmental SciencesCOMSAT, Abbottabad, Khyber Pakhtunkhwa 22060, Pakistan
| | - Imran Khan
- Department
of Botany, Shaheed Benazir Bhutto University, Dir Upper, Khyber Pakhtunkhwa 18050, Pakistan
| | - Uzma Khan
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Abdul Majid
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Sebghat Ullah Khan
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Onur Sahin
- Faculty
of Health Sciences, Department of Occupational Health and Safety, Sinop University, Sinop 57000, Turkey
| | - Aljawharah Alqathama
- Department
of Pharmaceutical Sciences, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Riaz
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper, Khyber Pakhtunkhwa 18050, Pakistan
| | - Rizwan Ahmad
- Department
of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O Box #1982, Dammam 31441, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department
of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
- Central Laboratories, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| |
Collapse
|
3
|
Tsilipounidaki K, Gkountinoudis CG, Florou Z, Fthenakis GC, Petinaki E. In Silico Molecular Analysis of Carbapenemase-Negative Carbapenem-Resistant Pseudomonas aeruginosa Strains in Greece. Microorganisms 2024; 12:805. [PMID: 38674749 PMCID: PMC11051870 DOI: 10.3390/microorganisms12040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
To date, three carbapenem resistance mechanisms have been identified: carbapenemase released from the pathogen, changes in the expression of the outer membrane OprD porin, and overexpression of the efflux pump MexAB-OprM. Twelve carbapenemase-negative carbapenem-resistant Pseudomonas aeruginosa strains, isolated from patients hospitalized at the University Hospital of Larissa, Central Greece, during 2023, which belonged to various sequence types (STs), were selected and were studied focusing on the characterization of their β-lactamases, on changes to OprD and its regulator MexT proteins, and on alterations to the MexAB-OprM regulator proteins encoded by the mexR, nalC, and nalD genes. Whole genome sequencing analysis revealed the presence of β-lactamase encoding genes, with blaPAO present in all isolates. Additionally, seven different genes of the oxacillinase family (blaOXA-35, blaOXA-50, blaOXA-395, blaOXA-396, blaOXA-486, blaOXA-488, blaOXA-494) were identified, with each strain harboring one to three of these. Regarding the OprD, five strains had truncated structures, at Loop 2, Loop 3, Loop 4, and Loop 9, while the remaining strains carried previously reported amino acid changes. Further, an additional strain had a truncated MexR; whereas, two other strains had totally modified NalC sequences. The active form of MexT, responsible for the downregulation of OprD production, as the intact sequence of the NalD protein, was found in all the strains studied. It is concluded that the truncated OprD, MexR, and NalC proteins, detected in eight strains, probably led to inactive proteins, contributing to carbapenem resistance. However, four strains carried known modifications in OprD, MexR, and NalC, as previously reported in both susceptible and resistant strains, a finding that indicates the complexity of carbapenem resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Katerina Tsilipounidaki
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (C.-G.G.); (Z.F.)
| | | | - Zoi Florou
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (C.-G.G.); (Z.F.)
| | | | - Efthymia Petinaki
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (C.-G.G.); (Z.F.)
| |
Collapse
|
4
|
Ventero MP, Haro-Moreno JM, Molina-Pardines C, Sánchez-Bautista A, García-Rivera C, Boix V, Merino E, López-Pérez M, Rodríguez JC. Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study. Antibiotics (Basel) 2023; 12:1619. [PMID: 37998821 PMCID: PMC10668777 DOI: 10.3390/antibiotics12111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa shows resistance to several antibiotics and often develops such resistance during patient treatment. OBJECTIVE Develop an in vitro model, using clinical isolates of P. aeruginosa, to compare the ability of the imipenem and imipenem/relebactam to generate resistant mutants to imipenem and to other antibiotics. Perform a genotypic analysis to detect how the selective pressure changes their genomes. METHODS The antibiotics resistance was studied by microdilution assays and e-test, and the genotypic study was performed by NGS. RESULTS The isolates acquired resistance to imipenem in an average of 6 days, and to imipenem/relebactam in 12 days (p value = 0.004). After 30 days of exposure, 75% of the isolates reached a MIC > 64 mg/L for imipenem and 37.5% for imipenem/relebactam (p value = 0.077). The 37.5% and the 12.5% imipenem/relebactam mutants developed resistance to piperacillin/tazobactam and ceftazidime, respectively, while the 87.5% and 37.5% of the imipenem mutants showed resistance to these drugs (p value = 0.003, p value = 0.015). The main biological processes altered by the SNPs were the glycosylation pathway, transcriptional regulation, histidine kinase response, porins, and efflux pumps. DISCUSSION The addition of relebactam delays the generation of resistance to imipenem and limits the cross-resistance to other beta-lactams. The clinical relevance of this phenomenon, which has the limitation that it has been performed in vitro, should be evaluated by stewardship programs in clinical practice, as it could be useful in controlling multi-drug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes, 38000 Grenoble, France
| | - Carmen Molina-Pardines
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Antonia Sánchez-Bautista
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Celia García-Rivera
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Vicente Boix
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Esperanza Merino
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| |
Collapse
|
5
|
Pedro SN, Gomes ATPC, Oskoei P, Oliveira H, Almeida A, Freire MG, Silvestre AJD, Freire CSR. Boosting antibiotics performance by new formulations with deep eutectic solvents. Int J Pharm 2022; 616:121566. [PMID: 35151818 DOI: 10.1016/j.ijpharm.2022.121566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The critical scenario of antimicrobial resistance to antibiotics highlights the need for improved therapeutics and/or formulations. Herein, we demonstrate that deep eutectic solvents (DES) formulations are very promising to remarkably improve the solubility, stability and therapeutic efficacy of antibiotics, such as ciprofloxacin. DES aqueous solutions enhance the solubility of ciprofloxacin up to 430-fold while extending the antibiotic stability. The developed formulations can improve, by 2 to 4-fold, the susceptibility of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria to the antibiotic. They also improve the therapeutic efficacy at concentrations where bacteria present resistance, without promoting tolerance development to ciprofloxacin. Furthermore, the incorporation of DES decreases the toxicity of ciprofloxacin towards immortalized human epidermal keratinocytes (HaCat cells). The results herein reveal the pioneering use of DES in fluoroquinolone-based formulations and their impact on the antibiotic's characteristics and on its therapeutic action.
Collapse
Affiliation(s)
- Sónia N Pedro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana T P C Gomes
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Párástu Oskoei
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Rehman A, Jeukens J, Levesque RC, Lamont IL. Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Antimicrob Agents Chemother 2021; 65:e0269620. [PMID: 33875431 PMCID: PMC8218647 DOI: 10.1128/aac.02696-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype.
Collapse
Affiliation(s)
- Attika Rehman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Québec, Canada
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Kawalek A, Modrzejewska M, Zieniuk B, Bartosik AA, Jagura-Burdzy G. Interaction of ArmZ with the DNA-binding domain of MexZ induces expression of mexXY multidrug efflux pump genes and antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01199-19. [PMID: 31527038 PMCID: PMC6879243 DOI: 10.1128/aac.01199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Multidrug efflux pumps play an important role in antibiotic resistance in bacteria. In Pseudomonas aeruginosa, MexXY pump provides intrinsic resistance to many antimicrobials, including aminoglycosides. The expression of mexXY operon is negatively regulated by MexZ repressor. The repression is alleviated in response to the antibiotic-induced ribosome stress, which results in increased synthesis of anti-repressor ArmZ, interacting with MexZ. The molecular mechanism of MexZ inactivation by ArmZ is not known. Here, we showed that the N-terminal part of MexZ, encompassing the DNA-binding domain, is required for interaction with ArmZ. Using the bacterial two hybrid system based mutant screening and pull-down analyses we identified substitutions in MexZ that diminished (R3S, K6E, R13H) or completely impaired (K53E) the interaction with ArmZ without blocking MexZ activity as a transcriptional repressor. Introduction of corresponding mexZ missense mutations into P aeruginosa PAO1161 chromosome impaired (mexZ K6E, mexZ R13H) or blocked (mexZ K53E) tetracycline mediated induction of mexY expression. Concomitantly, PAO1161 mexZ K53E strain was more susceptible to aminoglycosides. The identified residues are highly conserved in MexZ-like transcriptional regulators found in bacterial genomes encoding both MexX/MexY/MexZ and ArmZ/PA5470 orthologs, suggesting that a similar mechanism may contribute to induction of efflux mediated resistance in other bacterial species. Overall, our data shed light on the molecular mechanism of ArmZ mediated induction of intrinsic antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Magdalena Modrzejewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Bartlomiej Zieniuk
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| |
Collapse
|
8
|
Giani T, Arena F, Pollini S, Di Pilato V, D'Andrea MM, Henrici De Angelis L, Bassetti M, Rossolini GM. Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers. J Antimicrob Chemother 2019; 73:664-671. [PMID: 29216350 DOI: 10.1093/jac/dkx453] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 01/14/2023] Open
Abstract
Objectives Pseudomonas aeruginosa is a major cause of severe healthcare-associated infections and often shows MDR phenotypes. Ceftolozane/tazobactam is a new cephalosporin/β-lactamase inhibitor combination with potent activity against P. aeruginosa. This survey was carried out to evaluate the susceptibility of P. aeruginosa, circulating in Italy, to ceftolozane/tazobactam and comparators and to investigate the molecular epidemiology of carbapenemase-producing strains. Methods Consecutive non-replicate P. aeruginosa clinical isolates (935) from bloodstream infections and lower respiratory tract infections were collected from 20 centres distributed across Italy from September 2013 to November 2014. Antimicrobial susceptibility testing was performed by broth microdilution and results were interpreted according to the EUCAST breakpoints. Isolates resistant to ceftolozane/tazobactam were investigated for carbapenemase genes by PCR, and for carbapenemase activity by spectrophotometric assay. WGS using an Illumina platform was performed on carbapenemase-producing isolates. Results Ceftolozane/tazobactam was the most active molecule, retaining activity against 90.9% of P. aeruginosa isolates, followed by amikacin (88.0% susceptibility) and colistin (84.7% susceptibility). Overall, 48 isolates (5.1%) were positive for carbapenemase genes, including blaVIM (n = 32), blaIMP (n = 12) and blaGES-5 (n = 4), while the remaining ceftolozane/tazobactam-resistant isolates tested negative for carbapenemase production. Carbapenemase producers belonged to 10 different STs, with ST175 (n = 12) and ST621 (n = 11) being the most common lineages. Genome analysis revealed different trajectories of spread for the different carbapenemase genes. Conclusions Ceftolozane/tazobactam exhibited potent in vitro activity against P. aeruginosa causing invasive infections in Italy. Carbapenemase production was the most common mechanism of resistance to ceftolozane/tazobactam.
Collapse
Affiliation(s)
- Tommaso Giani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Arena
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Marco Maria D'Andrea
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Matteo Bassetti
- Infectious Diseases Division, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | | |
Collapse
|
9
|
Foster RA, Troficanto C, Bookstaver PB, Kohn J, Justo JA, Al-Hasan MN. Utility of Combination Antimicrobial Therapy in Adults with Bloodstream Infections due to Enterobacteriaceae and Non-Fermenting Gram-Negative Bacilli Based on In Vitro Analysis at Two Community Hospitals. Antibiotics (Basel) 2019; 8:antibiotics8010015. [PMID: 30744080 PMCID: PMC6466593 DOI: 10.3390/antibiotics8010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
This study examined the utility of combination therapy for bloodstream isolates of Enterobacteriaceae and non-fermenting Gram-negative bacilli (NFGN) from adults at two community hospitals from January 2010 through to June 2015. Changes to in vitro antimicrobial susceptibilities by adding ciprofloxacin or gentamicin to third-generation cephalosporins (3GC) were examined overall and in patients with risk factors for 3GC resistance. Overall ceftriaxone susceptibility among Enterobacteriaceae was 996/1063 (94%) and 247/295 (84%) in patients with 3GC resistance risk factors. Susceptibilities increased marginally by adding ciprofloxacin or gentamicin (mean difference 2.4% (95% CI 1.5, 3.4) and 3.0% (95% CI 2.0, 4.0), respectively, overall and 5.4% (95% CI 2.8, 8.0) and 7.1% (95% CI 4.2, 10.1), respectively, in patients with risk factors). Eighty-three of 105 (79%) NFGN were susceptible to ceftazidime overall and 20/29 (69%) in patients with prior beta-lactam use. Overall mean increase in susceptibilities was 15.2% (95% CI: 8.3, 22.2) and 17.1% (95% CI: 9.8, 24.5) for ciprofloxacin and gentamicin combinations, respectively; and 27.6% (95% CI: 10.3, 44.9) for either one with recent beta-lactam use. In this setting, empirical combination therapy had limited utility for Enterobacteriaceae bloodstream isolates but provided significant additional antimicrobial coverage to ceftazidime for NFGN, particularly in patients with prior beta-lactam use.
Collapse
Affiliation(s)
- Rachel A Foster
- Department of Pharmacy, Intermountain Healthcare, Murray, UT 84107, USA.
| | - Casey Troficanto
- Department of Pharmacy, Prisma Health Baptist Hospital, Columbia, SC 29220, USA.
| | - P Brandon Bookstaver
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA.
- Department of Pharmacy, Prisma Health Richland Hospital, Columbia, SC 29203, USA.
| | - Joseph Kohn
- Department of Pharmacy, Prisma Health Richland Hospital, Columbia, SC 29203, USA.
| | - Julie Ann Justo
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA.
- Department of Pharmacy, Prisma Health Richland Hospital, Columbia, SC 29203, USA.
| | - Majdi N Al-Hasan
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA.
- University of South Carolina School of Medicine, Columbia, SC 29209, USA.
- Department of Medicine, Division of Infectious Diseases, Palmetto Health University of South Carolina Medical Group, Columbia, SC 29203, USA.
| |
Collapse
|
10
|
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68:1-10. [DOI: 10.1099/jmm.0.000873] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Attika Rehman
- 1Department of Biochemistry, University of Otago, New Zealand
| | - Wayne M. Patrick
- 1Department of Biochemistry, University of Otago, New Zealand
- 2School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Iain L. Lamont
- 1Department of Biochemistry, University of Otago, New Zealand
| |
Collapse
|
11
|
Modulation of antimicrobial resistance in clinical isolates of Enterobacter aerogenes: A strategy combining antibiotics and chemosensitisers. J Glob Antimicrob Resist 2018; 16:187-198. [PMID: 30321623 DOI: 10.1016/j.jgar.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The main focus of this study was to evaluate the antimicrobial susceptibility profiles of a number of human clinical isolates of Enterobacter aerogenes isolates and to explore the effects of selected chemosensitisers on reversal of the resistant phenotype of these isolates. METHODS This study design was accomplished by: (i) characterising several multidrug-resistant (MDR) E. aerogenes clinical isolates; (ii) evaluating the contribution of target gene mutations to the resistance phenotype, focusing on fluoroquinolones and chloramphenicol only; (iii) evaluating the contribution of membrane permeability and efflux to the MDR phenotype; (iv) assessing the combined action of selected antimicrobials and chemosensitisers in order to identify combinations with synergistic effects able to reduce the minimum inhibitory concentration (MIC); and (v) understanding how these combinations can modulate the permeability or efflux of these isolates. RESULTS Resistance to ciprofloxacin could not be totally reversed owing to pre-existing mutations in target genes. Chloramphenicol susceptibility was efficiently restored by the addition of the selected chemosensitisers. From the modulation kinetics it was clear that phenothiazines were able to increase the accumulation of Hoechst dye. CONCLUSIONS Modulation of permeability and efflux in the presence of chemosensitisers can help us to propose more appropriate chemotherapeutic combinations that can set the model to be used in the treatment of these and other MDR infections.
Collapse
|
12
|
Singh S, Bhatia S. In silico identification of albendazole as a quorum sensing inhibitor and its in vitro verification using CviR and LasB receptors based assay systems. ACTA ACUST UNITED AC 2018; 8:201-209. [PMID: 30211080 PMCID: PMC6128976 DOI: 10.15171/bi.2018.23] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/18/2018] [Accepted: 03/11/2018] [Indexed: 01/18/2023]
Abstract
![]()
Introduction:Quorum sensing inhibition (QSI) is one of the vital tools to overcome emerging virulence of pathogenic bacteria which aims at curbing bacterial resistance. Targeting QS (quorum sensing) as chemotherapy is less likely to generate resistance among pathogens as it targets only the adaptation and not the survival mechanism of the pathogen. Several QS inhibitors were developed in the recent past but none of them managed to have clinical application due to known toxic effects for human consumption. A rapid development of QS inhibitor drugs could be achieved by verification of the QSI activity of drugs which are already in clinical use with known pharmacology. Recently, a known FDA approved clinical drug niclosamide belonging to an anthelmintic class is found to exhibit QSI activity.
Methods: We have focused our study on Albendazole, another FDA approved clinical drug belonging to the same class for its potential to act as QSI. The structure-based molecular docking is used for finding putative interactions made by this drug with the CviR and LasB receptor protein of Chromobacterium violaceum and Pseudomonas aeruginosa , respectively. Further, the in vitro activity of this drug has been evaluated by employing CviR and LasB receptor-based bioassay. The efficacy of this drug alone and in combination with antibiotic Tobramycin to inhibit P. aeruginosa based biofilms was also analyzed by developing the biofilms on chambered glass slides and performing anti-biofilm assay.
Results: Further, this drug found to inhibit purple pigment violacein production in C. violaceum , which is under the control of C6-AHL-CviR mediated QS in this human pathogen. The in vivo bioassays results suggested that albendazole has great potential to act as a QS inhibitor as found inhibiting violacein production in C. violaceum and biofilm formation in P. aeruginosa , respectively.
Conclusion: It is that structure-based molecular docking guided bioassay evaluation is an efficient tool for finding the new therapeutic use of old drugs which could have more chances to come easily in clinical application for their newly identified therapeutic uses.
Collapse
Affiliation(s)
- Shaminder Singh
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Chandigarh - 160036, India (Previous address).,Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad, Uttar-Pradesh-211007, India (Present address)
| | - Sonam Bhatia
- Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences (SIHAS), Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad, Uttar-Pradesh-211007, India
| |
Collapse
|
13
|
Su F, Wang J. Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state. Exp Ther Med 2017; 15:467-472. [PMID: 29387199 DOI: 10.3892/etm.2017.5431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas (P.) aeruginosa is an ubiquitous and metabolically versatile opportunistic pathogen and may cause various life-threatening diseases. Due to increasing emergence of resistance to carbapenems, novel drugs with improved antibacterial activities compared with those of traditional antibiotics are required. In the present study, berberine (BEB), a natural isoquinoline alkaloid, was used in combination with imipenem (IMP), a commonly-used carbapenem, to investigate their antibacterial activities against a clinical P. aeruginosa isolate PA012 and the potential mechanism. Screening revealed that the minimum inhibitory concentrations (MICs) of BEB and IMP were 512 and 256 µg/ml, respectively. The combination of BEB (1/4 MIC) and IMP (1/8 MIC) exhibited a synergistic effect with a fractional inhibitory concentration index of 0.375. The synergism of BEB and IMP was also demonstrated in a time-kill test and by scanning electron microscopic observation. Treatment with BEB at ¼ MIC in combination with IMP at 1/16, 1/8, 1/4 and ½ MIC revealed a concentration-dependent promoting effect of IMP on the intracellular accumulation of BEB and inhibition of bacterial adhesion. Further analysis of gene expression revealed that BEB (1/4 MIC) combined with IMP (1/8 MIC) decreased MexZ, MexX, MexY and outer membrane protein (Opr)M by 38, 35, 46 and 49% in PA012. In conclusion, these results suggested that IMP had synergistic effects with BEB against the clinical isolate PA012 via inhibition of the MexXY-OprM efflux pump.
Collapse
Affiliation(s)
- Fen Su
- Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jiliang Wang
- Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| |
Collapse
|
14
|
Jeukens J, Freschi L, Kukavica-Ibrulj I, Emond-Rheault JG, Tucker NP, Levesque RC. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa. Ann N Y Acad Sci 2017; 1435:5-17. [PMID: 28574575 PMCID: PMC7379567 DOI: 10.1111/nyas.13358] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Antibiotic resistance is a worldwide health issue spreading quickly among human and animal pathogens, as well as environmental bacteria. Misuse of antibiotics has an impact on the selection of resistant bacteria, thus contributing to an increase in the occurrence of resistant genotypes that emerge via spontaneous mutation or are acquired by horizontal gene transfer. There is a specific and urgent need not only to detect antimicrobial resistance but also to predict antibiotic resistance in silico. We now have the capability to sequence hundreds of bacterial genomes per week, including assembly and annotation. Novel and forthcoming bioinformatics tools can predict the resistome and the mobilome with a level of sophistication not previously possible. Coupled with bacterial strain collections and databases containing strain metadata, prediction of antibiotic resistance and the potential for virulence are moving rapidly toward a novel approach in molecular epidemiology. Here, we present a model system in antibiotic-resistance prediction, along with its promises and limitations. As it is commonly multidrug resistant, Pseudomonas aeruginosa causes infections that are often difficult to eradicate. We review novel approaches for genotype prediction of antibiotic resistance. We discuss the generation of microbial sequence data for real-time patient management and the prediction of antimicrobial resistance.
Collapse
Affiliation(s)
- Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Luca Freschi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | | | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
15
|
Pan YP, Xu YH, Wang ZX, Fang YP, Shen JL. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Arch Microbiol 2016; 198:565-71. [PMID: 27060003 DOI: 10.1007/s00203-016-1215-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/12/2016] [Accepted: 03/28/2016] [Indexed: 11/27/2022]
Abstract
Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in carbapenem-resistant P. aeruginosa. The mutations of regulatory genes may be a main factor contributing to overexpression of MexAB-OprM.
Collapse
Affiliation(s)
- Ya-Ping Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Hong Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Xin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Ya-Ping Fang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Ji-Lu Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Solé M, Fàbrega A, Cobos-Trigueros N, Zamorano L, Ferrer-Navarro M, Ballesté-Delpierre C, Reustle A, Castro P, Nicolás JM, Oliver A, Martínez JA, Vila J. In vivo evolution of resistance of Pseudomonas aeruginosa strains isolated from patients admitted to an intensive care unit: mechanisms of resistance and antimicrobial exposure. J Antimicrob Chemother 2015; 70:3004-13. [PMID: 26260130 DOI: 10.1093/jac/dkv228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/04/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The main objective of this study was to investigate the relationship among the in vivo acquisition of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates, the underlying molecular mechanisms and previous exposure to antipseudomonal agents. METHODS PFGE was used to study the molecular relatedness of the strains. The MICs of ceftazidime, cefepime, piperacillin/tazobactam, imipenem, meropenem, ciprofloxacin and amikacin were determined. Outer membrane protein profiles were assessed to study OprD expression. RT-PCR was performed to analyse ampC, mexB, mexD, mexF and mexY expression. The presence of mutations was analysed through DNA sequencing. RESULTS We collected 17 clonally related paired isolates [including first positive samples (A) and those with MICs increased ≥4-fold (B)]. Most B isolates with increased MICs of imipenem, meropenem and ceftazidime became resistant to these drugs. The most prevalent resistance mechanisms detected were OprD loss (65%), mexB overexpression (53%), ampC derepression (29%), quinolone target gene mutations (24%) and increased mexY expression (24%). Five (29%) B isolates developed multidrug resistance. Meropenem was the most frequently (71%) received treatment, explaining the high prevalence of oprD mutations and likely mexB overexpression. Previous exposure to ceftazidime showed a higher impact on selection of increased MICs than previous exposure to piperacillin/tazobactam. CONCLUSIONS Stepwise acquisition of resistance has a critical impact on the resistance phenotypes of P. aeruginosa, leading to a complex scenario for finding effective antimicrobial regimens. In the clinical setting, meropenem seems to be the most frequent driver of multidrug resistance development, while piperacillin/tazobactam, in contrast to ceftazidime, seems to be the β-lactam least associated with the selection of resistance mechanisms.
Collapse
Affiliation(s)
- Mar Solé
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Laura Zamorano
- University Hospital Son Espases, Palma de Mallorca, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anna Reustle
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Pedro Castro
- Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Antonio Oliver
- University Hospital Son Espases, Palma de Mallorca, Spain
| | | | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Shigemura K, Osawa K, Kato A, Tokimatsu I, Arakawa S, Shirakawa T, Fujisawa M. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J Antibiot (Tokyo) 2015; 68:568-72. [DOI: 10.1038/ja.2015.34] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 11/09/2022]
|
18
|
Purssell A, Poole K. Functional characterization of the NfxB repressor of the mexCD–oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology (Reading) 2013; 159:2058-2073. [DOI: 10.1099/mic.0.069286-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Andrew Purssell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
19
|
Monti MR, Morero NR, Miguel V, Argaraña CE. nfxB as a novel target for analysis of mutation spectra in Pseudomonas aeruginosa. PLoS One 2013; 8:e66236. [PMID: 23762483 PMCID: PMC3676378 DOI: 10.1371/journal.pone.0066236] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/02/2013] [Indexed: 02/06/2023] Open
Abstract
nfxB encodes a negative regulator of the mexCD-oprJ genes for drug efflux in the opportunistic pathogen Pseudomonas aeruginosa. Inactivating mutations in this transcriptional regulator constitute one of the main mechanisms of resistance to ciprofloxacin (Cipr). In this work, we evaluated the use of nfxB/Cipr as a new test system to study mutation spectra in P. aeruginosa. The analysis of 240 mutations in nfxB occurring spontaneously in the wild-type and mutator backgrounds or induced by mutagens showed that nfxB/Cipr offers several advantages compared with other mutation detection systems. Identification of nfxB mutations was easy since the entire open reading frame and its promoter region were sequenced from the chromosome using a single primer. Mutations detected in nfxB included all transitions and transversions, 1-bp deletions and insertions, >1-bp deletions and duplications. The broad mutation spectrum observed in nfxB relies on the selection of loss-of-function changes, as we confirmed by generating a structural model of the NfxB repressor and evaluating the significance of each detected mutation. The mutation spectra characterized in the mutS, mutT, mutY and mutM mutator backgrounds or induced by the mutagenic agents 2-aminopurine, cisplatin and hydrogen peroxide were in agreement with their predicted mutational specificities. Additionally, this system allowed the analysis of sequence context effects since point mutations occurred at 85 different sites distributed over the entire nfxB. Significant hotspots and preferred sequence contexts were observed for spontaneous and mutagen-induced mutation spectra. Finally, we demonstrated the utility of a luminescence-based reporter for identification of nfxB mutants previous to sequencing analysis. Thus, the nfxB/Cipr system in combination with the luminescent reporter may be a valuable tool for studying mutational processes in Pseudomonas spp. wherein the genes encoding the NfxB repressor and the associated efflux pump are conserved.
Collapse
Affiliation(s)
- Mariela R. Monti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Natalia R. Morero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Virginia Miguel
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Carlos E. Argaraña
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
20
|
Fish DN, Kiser TH. Correlation of Pharmacokinetic/Pharmacodynamic-Derived Predictions of Antibiotic Efficacy with Clinical Outcomes in Severely Ill Patients withPseudomonas aeruginosaPneumonia. Pharmacotherapy 2013; 33:1022-34. [DOI: 10.1002/phar.1310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Douglas N. Fish
- Department of Clinical Pharmacy; Skaggs School of Pharmacy and Pharmaceutical Sciences; University of Colorado Anschutz Medical Campus; Aurora Colorado
| | - Tyree H. Kiser
- Department of Clinical Pharmacy; Skaggs School of Pharmacy and Pharmaceutical Sciences; University of Colorado Anschutz Medical Campus; Aurora Colorado
| |
Collapse
|
21
|
Fehlberg LC, Xavier DE, Peraro PP, Marra AR, Edmond MB, Gales AC. Beta-Lactam Resistance Mechanisms inPseudomonas aeruginosaStrains Causing Bloodstream Infections: Comparative Results Between Brazilian and American Isolates. Microb Drug Resist 2012; 18:402-7. [DOI: 10.1089/mdr.2011.0174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lorena C.C. Fehlberg
- Division of Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danilo E. Xavier
- Division of Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula P. Peraro
- Division of Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre R. Marra
- Division of Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
- Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michael B. Edmond
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ana C. Gales
- Division of Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother 2012; 56:1680-5. [PMID: 22232279 DOI: 10.1128/aac.05693-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of resistance presents a debilitating change in the management of infectious diseases. Currently, the temporal relationship and interplay between various mechanisms of drug resistance are not well understood. A thorough understanding of the resistance development process is needed to facilitate rational design of countermeasure strategies. Using an in vitro hollow-fiber infection model that simulates human drug treatment, we examined the appearance of efflux pump (acrAB) overexpression and target topoisomerase gene (gyrA and parC) mutations over time in the emergence of quinolone resistance in Escherichia coli. Drug-resistant isolates recovered early (24 h) had 2- to 8-fold elevation in the MIC due to acrAB overexpression, but no point mutations were noted. In contrast, high-level (≥ 64× MIC) resistant isolates with target site mutations (gyrA S83L with or without parC E84K) were selected more readily after 120 h, and regression of acrAB overexpression was observed at 240 h. Using a similar dosing selection pressure, the emergence of levofloxacin resistance was delayed in a strain with acrAB deleted compared to the isogenic parent. The role of efflux pumps in bacterial resistance development may have been underappreciated. Our data revealed the interplay between two mechanisms of quinolone resistance and provided a new mechanistic framework in the development of high-level resistance. Early low-level levofloxacin resistance conferred by acrAB overexpression preceded and facilitated high-level resistance development mediated by target site mutation(s). If this interpretation is correct, then these findings represent a paradigm shift in the way quinolone resistance is thought to develop.
Collapse
|
23
|
McIntosh EDG. Efflux: how bacteria use pumps to control their microenvironment. Handb Exp Pharmacol 2012:153-166. [PMID: 23090601 DOI: 10.1007/978-3-642-28951-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Efflux pumps are a potent and clinically important cause of antibiotic resistance. The particular focus of this chapter is on the efflux pump as a target for antimicrobial therapy and the development of new antibacterials to address the efflux problem.Tigecycline is an example of how old antibiotics, in this case tetracyclines, which have become substrates for efflux pumps, can be extensively modified to restore antimicrobial activity and clinical efficacy.
Collapse
|
24
|
Esquisabel AC, Rodríguez M, Campo-Sosa A, Rodríguez C, Martínez-Martínez L. Mechanisms of resistance in clinical isolates of Pseudomonas aeruginosa less susceptible to cefepime than to ceftazidime. Clin Microbiol Infect 2011; 17:1817-22. [DOI: 10.1111/j.1469-0691.2011.03530.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 2011; 36:340-63. [PMID: 21707670 DOI: 10.1111/j.1574-6976.2011.00290.x] [Citation(s) in RCA: 520] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
26
|
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
27
|
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2:65. [PMID: 21747788 PMCID: PMC3128976 DOI: 10.3389/fmicb.2011.00065] [Citation(s) in RCA: 581] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/24/2011] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
28
|
Leitner I, Nemeth J, Feurstein T, Abrahim A, Matzneller P, Lagler H, Erker T, Langer O, Zeitlinger M. The third-generation P-glycoprotein inhibitor tariquidar may overcome bacterial multidrug resistance by increasing intracellular drug concentration. J Antimicrob Chemother 2011; 66:834-9. [PMID: 21393173 DOI: 10.1093/jac/dkq526] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The use of efflux pump inhibitors may be a powerful strategy to overcome transporter-mediated bacterial multidrug resistance. In the present study, we set out to investigate the potency of tariquidar, a third-generation P-glycoprotein inhibitor in clinical development, for overcoming bacterial resistance towards ciprofloxacin. METHODS Staphylococcus aureus 29213 (SA29213) and S. aureus 1199B (SA1199B), which overexpresses the multidrug transporter NorA, as well as Pseudomonas aeruginosa 27853 and Stenotrophomonas maltophilia BAA-85, which expresses SmeDEF, were exposed to ciprofloxacin in the presence and absence of tariquidar or, for comparative reasons, elacridar. Activity of both P-glycoprotein inhibitors was evaluated by determination of MICs and time-kill curves, and by quantification of uptake of ciprofloxacin into bacterial cells. RESULTS Activity of tariquidar and elacridar was comparable for S. aureus strains, and both dose-dependently increased susceptibility towards ciprofloxacin. Highest effects were observed for SA1199B, where the addition of tariquidar resulted in a 10-fold reduction of the ciprofloxacin MIC, while no effect was observed for P. aeruginosa. For S. maltophilia, elacridar but not tariquidar improved susceptibility. Uptake of [14C]ciprofloxacin and modification of susceptibility showed significant correlations (r=0.89, P<0.0001). Tariquidar had no intrinsic activity against any strain tested. CONCLUSIONS We conclude that tariquidar has potent inhibitory effect against certain bacterial efflux pumps in vitro. Their high activity at clinically achievable concentrations might yield this class of drugs promising for future applications in infectious diseases.
Collapse
Affiliation(s)
- I Leitner
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|