1
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Gordeeva V, Sharova E, Arapidi G. Progress in Methods for Copy Number Variation Profiling. Int J Mol Sci 2022; 23:ijms23042143. [PMID: 35216262 PMCID: PMC8879278 DOI: 10.3390/ijms23042143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Copy number variations (CNVs) are the predominant class of structural genomic variations involved in the processes of evolutionary adaptation, genomic disorders, and disease progression. Compared with single-nucleotide variants, there have been challenges associated with the detection of CNVs owing to their diverse sizes. However, the field has seen significant progress in the past 20–30 years. This has been made possible due to the rapid development of molecular diagnostic methods which ensure a more detailed view of the genome structure, further complemented by recent advances in computational methods. Here, we review the major approaches that have been used to routinely detect CNVs, ranging from cytogenetics to the latest sequencing technologies, and then cover their specific features.
Collapse
Affiliation(s)
- Veronika Gordeeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.S.); (G.A.)
- Moscow Institute of Physics and Technology, National Research University, Moscow Oblast, 141701 Moscow, Russia
- Correspondence:
| | - Elena Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.S.); (G.A.)
| | - Georgij Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.S.); (G.A.)
- Moscow Institute of Physics and Technology, National Research University, Moscow Oblast, 141701 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Molyer B, Kumar A, Angel JB. SMAC Mimetics as Therapeutic Agents in HIV Infection. Front Immunol 2021; 12:780400. [PMID: 34899741 PMCID: PMC8660680 DOI: 10.3389/fimmu.2021.780400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although combination antiretroviral therapy is extremely effective in lowering HIV RNA to undetectable levels in the blood, HIV persists in latently infected CD4+ T-cells and persistently infected macrophages. In latently/persistently infected cells, HIV proteins have shown to affect the expression of proteins involved in the apoptosis pathway, notably the inhibitors of apoptosis proteins (IAPs), and thereby influence cell survival. IAPs, which are inhibited by endogenous second mitochondrial-derived activators of caspases (SMAC), can serve as targets for SMAC mimetics, synthetic compounds capable of inducing apoptosis. There is increasing evidence that SMAC mimetics can be used to reverse HIV latency and/or kill cells that are latently/persistently infected with HIV. Here, we review the current state of knowledge of SMAC mimetics as an approach to eliminate HIV infected cells and discuss the potential future use of SMAC mimetics as part of an HIV cure strategy.
Collapse
Affiliation(s)
- Bengisu Molyer
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Apoptosis Research Center of Children's Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
4
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
5
|
Xing D, Fadare O. Molecular events in the pathogenesis of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021; 38:50-61. [PMID: 33032902 PMCID: PMC7749059 DOI: 10.1053/j.semdp.2020.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Vulvar squamous cell carcinomas (VSCC), which constitute over 90% of vulvar malignancies in adults, are classifiable into 2 subgroups that are mostly clinicopathologically distinct, a classification that is fundamentally based whether or not the tumors are HPV-mediated. In this review, we aim to summarize the recent advances in the understanding of molecular events in the pathogenesis of VSCC, including common and targetable mutations, copy number alterations, epigenetics, noncoding RNAs, and tumor immune microenvironment, which may provide insight into the future management of the disease. These events show substantial differences between the 2 subgroups, although significant areas of overlap exist. Recurrent, driver mutations appear to be substantially more prevalent in HPV(-) VSCC. TP53 mutations are the most common somatic mutations in VSCC overall, and are notably predominant in the HPV(-) VSCC, where 30-88% show a mutation. TP53 mutations are associated with worse patient outcomes, and co-mutations between TP53 and either HRAS, PIK3CA or CDKN2A appear to define subsets with even worse outcomes. A wide variety of other somatic mutations have been identified, including a subset with different mutational frequencies between HPV(+) and HPV(-) VSCC. CDKN2A mutations are common, and have been identified in 21 to 55% of HPV(-) VSCC, and in 2 to 25% of HPV(+) VSCC. Hypermethylation of CDKN2A is the most frequently reported epigenetic alteration in VSCC and the expression of some microRNAs may be associated with patient outcomes. The PTEN/PI3K/AKT/mTOR pathway is commonly altered in HPV(+) VSCC, and is accordingly potentially targetable. HPV-positivity/p16 block expression by immunohistochemistry has been found to be an independent prognostic marker for improved survival in VSCC, and may have some predictive value in VSCC patients treated with definitive radiotherapy. 22-39.3% and 68% of VSCC show EGFR amplification and protein overexpression respectively, although the prognostic and predictive value of an EGFR alteration requires additional study. Recurrent chromosomal gains in VSCCs have been found at 1q, 2q, 3q, 4p, 5p, 7p, 8p, 8q, and 12q, and there may be differential patterns of alterations depending on HPV-status. At least one-third of VSCC patients may potentially benefit from immune checkpoint inhibition therapy, based on a high frequency of PD-L1 expression or amplification, or a high tumor mutational burden. Additional studies are ultimately required to better understand the global landscape of genetic and epigenetic alterations in VSCC, and to identify and test potential targets for clinical application.
Collapse
Affiliation(s)
- Deyin Xing
- Departments of Pathology, Oncology, Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego Health, La Jolla, CA, United States
| |
Collapse
|
6
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
7
|
Arpalahti L, Haglund C, Holmberg CI. Proteostasis Dysregulation in Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:101-115. [PMID: 32274754 DOI: 10.1007/978-3-030-38266-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.
Collapse
Affiliation(s)
- Leena Arpalahti
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina I Holmberg
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
9
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
10
|
Pobbati AV, Mejuch T, Chakraborty S, Karatas H, Bharath SR, Guéret SM, Goy PA, Hahne G, Pahl A, Sievers S, Guccione E, Song H, Waldmann H, Hong W. Identification of Quinolinols as Activators of TEAD-Dependent Transcription. ACS Chem Biol 2019; 14:2909-2921. [PMID: 31742995 DOI: 10.1021/acschembio.9b00786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcriptional co-regulators YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are the vertebrate downstream effectors of the Hippo signaling pathway that controls various physiological and pathological processes. YAP and TAZ pair with the TEAD (TEA domain) family of transcription factors to initiate transcription. We previously identified a tractable pocket in TEADs, which has been physiologically shown to bind palmitate. Herein, a TEAD-palmitate interaction screen was developed to select small molecules occupying the palmitate-binding pocket (PBP) of TEADs. We show that quinolinols were TEAD-binding compounds that augment YAP/TAZ-TEAD activity, which was verified using TEAD reporter assay, RT-qPCR, and RNA-Seq analyses. Structure-activity relationship investigations uncovered the quinolinol substituents that are necessary for TEAD activation. We reveal a novel mechanism where quinolinols stabilize YAP/TAZ protein levels by occupying the PBP. The enhancement of YAP activity by quinolinols accelerates the in vivo wound closure in a mouse wound-healing model. Although small molecules that occupy the PBP have been shown to inhibit YAP/TAZ-TEAD activity, leveraging PBP to activate TEADs is a novel approach.
Collapse
Affiliation(s)
- Ajaybabu V. Pobbati
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Tom Mejuch
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sayan Chakraborty
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Hacer Karatas
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sakshibeedu R. Bharath
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Stéphanie M. Guéret
- AstraZeneca−Max Planck Institute Satellite Unit, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Pierre-Alexis Goy
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119077 Singapore
| | - Gernot Hahne
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Ernesto Guccione
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Haiwei Song
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technische Universität Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Wanjin Hong
- Department of Multi-Modal Molecular (M3) Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| |
Collapse
|
11
|
UHRF1-KAT7-mediated regulation of TUSC3 expression via histone methylation/acetylation is critical for the proliferation of colon cancer cells. Oncogene 2019; 39:1018-1030. [PMID: 31582837 DOI: 10.1038/s41388-019-1032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Abstract
The epigenetic factor UHRF1 regulates transcription by modulating DNA methylation and histone modification, and plays critical roles in proliferation, development, and tumorigenesis. Here, we show that Wnt/c-Myc signaling upregulates UHRF1, which in turn downregulates TUSC3, a candidate tumor suppressor gene that is frequently deleted or downregulated in several cancers. We also show that UHRF1-mediated downregulation of TUSC3 is required for the proliferation of colon cancer cells. Furthermore, we demonstrate that UHRF1 suppresses TUSC3 expression by interacting with methylated H3K14 and thereby suppressing the acetylation of H3K14 by the histone acetyltransferase KAT7. Our study provides evidence for the significance of UHRF1-KAT7-mediated regulation of histone methylation/acetylation in the proliferation of tumor cells and in a diverse set of biological processes controlled by Wnt/c-Myc signaling.
Collapse
|
12
|
Joseph J, Radulovich N, Wang T, Raghavan V, Zhu CQ, Tsao MS. Rho guanine nucleotide exchange factor ARHGEF10 is a putative tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene 2019; 39:308-321. [DOI: 10.1038/s41388-019-0985-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022]
|
13
|
Xing D, Liu Y, Park HJ, Baek I, Tran H, Cheang G, Novo J, Dillon J, Matoso A, Farmer E, Cheng MA, Tsai YC, Lombardo K, Conner MG, Vang R, Hung CF, Wu TC, Song W. Recurrent genetic alterations and biomarker expression in primary and metastatic squamous cell carcinomas of the vulva. Hum Pathol 2019; 92:67-80. [PMID: 31437519 DOI: 10.1016/j.humpath.2019.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/26/2022]
Abstract
Using a comprehensive next-generation sequencing pipeline (143 genes), Oncomine Comprehensive v.2, we analyzed genetic alterations on a set of vulvar squamous cell carcinomas (SCCs) with emphasis on the primary and metastatic samples from the same patient, to identify amenable therapeutic targets. Clinicopathologic features were reported and genomic DNA was extracted from 42 paraffin-embedded tumor tissues of 32 cases. PD-L1 expression was evaluated in 20 tumor tissues (10 cases with paired primary and metastatic tumors). Fifteen (88%) of 17 successfully analyzed HPV-unrelated SCCs harbored TP53 mutations. 2 different TP53 mutations had been detected in the same tumor in 4 of 15 cases. Other recurrent genetic alterations in this group of tumors included CDKN2a mutations (41%), HRAS mutations (12%), NOTCH1 mutations (12%) and BIRC3 (11q22.1-22.2) amplification (12%). Six HPV-related tumors harbored PIK3CA, BAP1, PTEN, KDR, CTNNB1, and BRCA2 mutations, of which, one case also contained TP53 mutation. Six cases showed identical mutations in paired primary site and distant metastatic location and four cases displayed different mutational profiles. PD-L1 expression was seen in 6 of 10 primary tumors and all 6 paired cases showed discordant PD-L1 expression in the primary and metastatic sites. Our results further confirmed the genetic alterations that are amenable to targeted therapy, offering the potential for individualized management strategies for the treatment of these aggressive tumors with different etiology. Discordant PD-L1 expression in the primary and metastatic vulvar SCCs highlights the importance of evaluation of PD-L1 expression in different locations to avoid false negative information provided for immunotherapy.
Collapse
Affiliation(s)
- Deyin Xing
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD.
| | - Yuehua Liu
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Hyeon Jin Park
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York 10065, NY
| | - Inji Baek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York 10065, NY
| | - Hung Tran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York 10065, NY
| | - Gloria Cheang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York 10065, NY
| | - Jorge Novo
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Jessica Dillon
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Andres Matoso
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Emily Farmer
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Max A Cheng
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Ya-Chea Tsai
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Kara Lombardo
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Michael G Conner
- Department of Pathology, The University of Alabama at Birmingham, Birmingham 35233, AL
| | - Russell Vang
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD; Department of Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Tzyy-Choou Wu
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore 21231, MD; Department of Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore 21231, MD
| | - Wei Song
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York 10065, NY.
| |
Collapse
|
14
|
Han X, Tan Q, Yang S, Li J, Xu J, Hao X, Hu X, Xing P, Liu Y, Lin L, Gui L, Qin Y, Yang J, Liu P, Wang X, Dai W, Lin D, Lin H, Shi Y. Comprehensive Profiling of Gene Copy Number Alterations Predicts Patient Prognosis in Resected Stages I-III Lung Adenocarcinoma. Front Oncol 2019; 9:556. [PMID: 31448219 PMCID: PMC6691340 DOI: 10.3389/fonc.2019.00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) possesses a poor prognosis with a low 5-year survival rate even for stages I-III resected patients, it is thus critical to understand the determinants that affect the survival and discover new potentially prognostic biomarkers. Somatic copy number alterations (CNAs) are major source of genomic variations driving tumor evolution, CNAs screening may identify prognostic biomarkers. Methods: Oncoscan MIP array was used to analyze the patterns of CNAs on formalin fixed paraffin embedded(FFPE) tumor specimens from 163 consecutive stage I-III resected LUAD patients, 145 out of which received platinum-based adjuvant chemotherapy. Results: Of the 163 patients, 91(55.8%) were recurred within 3 years after surgery. The most common aberrations in our cohort were 1q, 5p, 5q, 7p, 8q, 14p, 16p, 17q, 20q for copy number gains and 8p, 9p, 13p, 16q, 18q for losses. The GISTIC2 analysis produced 45 amplification peaks and 40 deletion peaks, involving some reported genes TERT, EGFR, MYC, CCND1, CDK4, MDM2, ERBB2, NKX2-1, CCNE1, and CDKN2A, most of which were consistent with TCGA database. The amplifications of 12p12.1 (CMAS, GOLT1B, YS2, LDHB, RECQL, ETNK1, IAPP, PYROXD1, KRAS) and KDM5A were correlated with worse prognosis in our cohort, this result was further validated in 506 LUAD patients from TCGA. In addition, 163 patients could be well-classified into five groups, and the clinical outcomes were significantly different based on threshold copy number at reoccurring alteration peaks. Among the 145 patients who received adjuvant chemotherapy, focal amplification of ERBB2 and deletion of 4q34.3 were found to be specific in relapsed patients, this result was validated in an independent group of Imielinski et al., demonstrating these two CNAs may contribute to resected LUAD recurrence after adjuvant chemotherapy. Conclusion: This study suggests that CNAs profiling may be a potential prognostic classifier in resected LAUD patients. Amplifications of 12p12.1 and KDM5A might be prognostic biomarkers for LUAD, and amplification of ERBB2 and deletion of 4q34.3 predicted early relapse after adjuvant chemotherapy. These novel findings may provide implication for better implementation of precision therapy for lung cancer patients.
Collapse
Affiliation(s)
- Xiaohong Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianping Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Lin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xingyuan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Wumin Dai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Dongmei Lin
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Lin
- Department of Medical Record, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| |
Collapse
|
15
|
Yang L, Kumar B, Shen C, Zhao S, Blakaj D, Li T, Romito M, Teknos TN, Williams TM. LCL161, a SMAC-mimetic, Preferentially Radiosensitizes Human Papillomavirus-negative Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther 2019; 18:1025-1035. [PMID: 31015310 DOI: 10.1158/1535-7163.mct-18-1157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Targeting inhibitor of apoptosis proteins (IAP) with second mitochondria-derived activator of caspase (SMAC) mimetics may promote cancer cell death. We tested whether cIAP1 predicts poor prognosis in head and neck squamous cell carcinoma (HNSCC) and whether a novel Smac-mimetic, LCL161, could radiosensitize human papillomavirus-positive (HPV+) and -negative (HPV-) HNSCC. The association of BIRC2 (encoding cIAP1) mRNA level with HPV status in HNSCC was analyzed using The Cancer Genome Atlas (TCGA) database. cIAP1 was assessed by IHC on an HNSCC tissue microarray (TMA, n = 84) followed by correlation analysis with HPV status and patient outcomes. Human cell culture and animal models of HNSCC were used to analyze the outcome and molecular characteristics following radiotherapy in combination with LCL161. cIAP1 expression is increased in HPV- compared with HPV+HNSCC tumors in the TCGA database. In our TMA, cIAP1 was overexpressed in HNSCC compared with normal tissues (P = 0.0003) and associated with a poor overall survival (P = 0.0402). cIAP1 levels were higher in HPV- than that in HPV+HNSCC tumors (P = 0.004) and patients with cIAP1+/HPV- HNSCC had the worst survival. LCL161 effectively radiosensitized HPV- HNSCC cells, which was accompanied with enhanced apoptosis, but not HPV+ HNSCC cells. Importantly, LCL161 in combination with radiotherapy led to dramatic tumor regression of HPV- HNSCC tumor xenografts, accompanied by cIAP1 degradation and apoptosis activation. These results reveal that cIAP1 is a prognostic and a potential therapeutic biomarker for HNSCC, and targeting cIAP1 with LCL161 preferentially radiosensitizes HPV- HNSCC, providing justification for clinical testing of LCL161 in combination with radiation for patients with HPV- HNSCC.
Collapse
Affiliation(s)
- Linlin Yang
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Bhavna Kumar
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Changxian Shen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Songzhu Zhao
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Dukagjin Blakaj
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Tianyun Li
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Mitchell Romito
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Theodoros N Teknos
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, Ohio.
| |
Collapse
|
16
|
Yeung YT, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A, Argüelles S. Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacol Res 2019; 143:151-165. [PMID: 30910741 DOI: 10.1016/j.phrs.2019.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Human beings are facing emerging degenerative and cancer diseases, in large part, as a consequence of increased life expectancy. In the near future, researchers will have to put even more effort into fighting these new challenges, one of which will be prevention of cancer while continuing to improve the aging process through this increased life expectancy. In the last few decades, relevance of the Hippo pathway on cancer has become an important study since it is a major regulator of organ size control and proliferation. However, its deregulation can induce tumors throughout the body by regulating cell proliferation, disrupting cell polarity, releasing YAP and TAZ from the Scribble complexes and facilitating survival gene expression via activation of TEAD transcription factors. This pathway is also involved in some of the most important mechanisms that control the aging processes, such as the AMP-activated protein kinase and sirtuin pathways, along with autophagy and oxidative stress response/antioxidant defense. This could be the link between two tightly connected processes that could open a broader range of targeted molecular therapies to fight aging and cancer. Therefore, available knowledge of the processes involved in the Hippo pathway during aging and cancer must necessarily be well understood.
Collapse
Affiliation(s)
- Yiu To Yeung
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Mercedes Cano
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Mario F Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antonio Ayala
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
17
|
Wang P, Wei D, Zhang H, Chen J, Zhang D, Ganapathy S, Isakson P, Chen C, Zhu T. PKCι and YAP1 are crucial in promoting pancreatic tumorigenesis. Oncotarget 2018; 9:32736-32750. [PMID: 30214681 PMCID: PMC6132349 DOI: 10.18632/oncotarget.25127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant disease with 5-year survival rate of less than 6%. Activating mutations of Kras (mu-Kras) are often detected in most of PDAC patients. Although it has been known that oncogenic Kras is the driver of pancreatic cancer initiation and development, the underlying mechanisms by which mu-Kras promotes PDAC remain poorly understood. Here, we identify that PKCι is one of the crucial factors for supporting the survival of pancreatic cancer cells expressing mu-Kras. Our study demonstrates that after the knockdown of PKCι, the expression of the transcriptional co-activator YAP1 is decreased, which hinders the expression of the downstream target gene Mcl-1, and subsequently sensitizes pancreatic cancer MiaPaCa and PANC-1 cells experssing mu-Kras to apoptosis. In comparison, the suppression of PKCι has little impact on the viability of non-neoplastic pancreatic HPDE6-C7 cells. Moreover, the transient overexpression of oncogenic Kras in HPDE6-C7 elevates the expression of PKCι and YAP1 concomitantly. The upregulated YAP1 in HPDE6-C7/ mu-Kras cells is abolished once PKCι is suppressed, suggesting the linear relationship among mu-Kras, PKCι and YAP1. This phenomenon is further proven by the co-upregulation of PKCι and YAP1 in HPDE6-C7 cells stably transfected with mu-Kras. Taken together, our findings suggest that PKCι acts through promoting YAP1 function to promote the survival of pancreatic cancer cells expressing mu-Kras. It appears that targeting PKCι-YAP1 signaling is a feasible strategy for developing new therapeutics for treating pancreatic cancer patients.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Dapeng Wei
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hongmei Zhang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Jiao Chen
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Hospital of University of Electronic Science and Technology and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P. R. China
| | - Suthakar Ganapathy
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Pauline Isakson
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Göteborg 41345, Sweden
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
18
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
19
|
Vašíčková K, Horak P, Vaňhara P. TUSC3: functional duality of a cancer gene. Cell Mol Life Sci 2018; 75:849-857. [PMID: 28929175 PMCID: PMC11105401 DOI: 10.1007/s00018-017-2660-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Two decades ago, following a systematic screening of LOH regions on chromosome 8p22, TUSC3 has been identified as a candidate tumor suppressor gene in ovarian, prostate and pancreatic cancers. Since then, a growing body of evidence documented its clinical importance in various other types of cancers, and first initial insights into its molecular function and phenotypic effects have been gained, though the precise role of TUSC3 in different cancers remains unclear. As a part of the oligosaccharyltransferase complex, TUSC3 localizes to the endoplasmic reticulum and functions in final steps of N-glycosylation of proteins, while its loss evokes the unfolded protein response. We are still trying to figure out how this mechanistic function is reconcilable with its varied effects on cancer promotion. In this review, we focus on cancer-related effects of TUSC3 and envisage a possible role of TUSC3 beyond endoplasmic reticulum.
Collapse
Affiliation(s)
- Kateřina Vašíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 65691, Brno, Czech Republic
| | - Peter Horak
- Department of Translational Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 65691, Brno, Czech Republic.
| |
Collapse
|
20
|
Tumor suppressor candidate 3: A novel grading tool and predictor of clinical malignancy in human gliomas. Oncol Lett 2018; 15:5655-5661. [PMID: 29556302 PMCID: PMC5844021 DOI: 10.3892/ol.2018.8082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/21/2017] [Indexed: 01/29/2023] Open
Abstract
For several years, the cause of autosomal recessive mental retardation has been attributed to the deletion or mutation of a gene named tumor suppressor candidate 3 (TUSC3). Previous research has identified that TUSC3 is a potential tumor suppressor gene in oral epidermoid carcinoma, lung cancer and esophageal cancer. However, to the best of our knowledge, no previously published data has existed on the expression of TUSC3 in gliomas. The present study focused on the expression of TUSC3 in brain gliomas. Additionally, the present study sought to identify he association between TUSC3 expression and the typical clinical and pathological disease manifestations of gliomas. TUSC3 levels were evaluated using a western blot assay and immunohistochemistry on tissue microarray slides. Results indicated a significant decrease in TUSC3 expression in glioma tissues compared with the normal adjacent tissues. Furthermore, TUSC3 expression and World Health Organization grade demonstrated an inverse association in patients with glioma. This revealed that lower levels of TUSC3 in gliomas may be associated with a poorly-differentiated (high grade) tumor and thus a higher malignancy. Through the combination of the results of the present study and future research projects, TUSC3 may be a novel grading tool that assists with evaluating tumor malignancy and consequently a more active therapeutic regimen may be used in patients with glioma.
Collapse
|
21
|
Hamzehzadeh L, Caraglia M, Atkin SL, Sahebkar A. Dickkopf homolog 3 (DKK3): A candidate for detection and treatment of cancers? J Cell Physiol 2018; 233:4595-4605. [PMID: 29206297 DOI: 10.1002/jcp.26313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022]
Abstract
Wnt signaling is an evolutionary highly conserved pathway that is modulated by several inhibitors and activators, and plays a key role in numerous physiological processes. One of the extracellular Wnt inhibitors is the DKK (Dickkopf Homolog) family which has four members (Dkk1-4) and a unique Dkk3-related gene, Dkkl1 (soggy). DKK3 is a divergent member of the DKK protein family. Evidence suggests that DKK3 may serve as a potential therapeutic target in several types of human cancers. We review here the biological role of DKK3 as a tumor suppressor gene (TSG) or oncogene, and its correlation with various miRNAs. In addition, we discuss the role of polymorphisms and promoter methylation of the DKK3 gene, and of its expression in regulating cancer cell proliferation. Finally, we propose that DKK3 may be considered as both a biomarker and a therapeutic target in different cancers.
Collapse
Affiliation(s)
- Leila Hamzehzadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Gao Y, Yang Y, Yuan F, Huang J, Xu W, Mao B, Yuan Z, Bi W. TNFα-YAP/p65-HK2 axis mediates breast cancer cell migration. Oncogenesis 2017; 6:e383. [PMID: 28945218 PMCID: PMC5623908 DOI: 10.1038/oncsis.2017.83] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/30/2017] [Accepted: 08/19/2017] [Indexed: 12/16/2022] Open
Abstract
Clinical and experimental evidence indicates that macrophages could promote solid-tumor progression and metastasis. However, the mechanisms underlying this process remain unclear. Here we show that yes-associated protein 1 (YAP1), a transcriptional regulator that controls tissue growth and regeneration, has an important role in tumor necrosis factor α (TNF α)-induced breast cancer migration. Mechanistically, macrophage conditioned medium (CM) or TNFα triggers IκB kinases (IKKs)-mediated YAP phosphorylation and activation in breast cancer cells. We further found that TNFα or macrophage CM treatment increases the interaction between p65 and YAP. Chromatin immunoprecipitation (ChIP) assay shows that YAP/TEAD (TEA domain family member) and p65 proteins synergistically regulate the transcription of hexokinase 2 (HK2), a speed-limiting enzyme in glycolysis, and promotes TNFα-induced or macrophage CM-induced cell migration. Together, our findings indicate an important role of TNFα-IKK-YAP/p65-HK2 signaling axis in the process of inflammation-driven migration in breast cancer cells, which reveals a new molecular link between inflammation and breast cancer metastasis.
Collapse
Affiliation(s)
- Y Gao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Y Yang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - F Yuan
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - J Huang
- Department of Orthopedics, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China
| | - W Xu
- General Surgery Center, Chinese PLA General Hospital, Beijing, China
| | - B Mao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Z Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - W Bi
- Department of Orthopedics, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Yu X, Zhai C, Fan Y, Zhang J, Liang N, Liu F, Cao L, Wang J, Du J. TUSC3: a novel tumour suppressor gene and its functional implications. J Cell Mol Med 2017; 21:1711-1718. [PMID: 28272772 PMCID: PMC5571513 DOI: 10.1111/jcmm.13128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
The tumour suppressor candidate 3 (TUSC3) gene is located on chromosome region 8p22 and encodes the 34 kD TUSC3 protein, which is a subunit of the oligosaccharyl transferase responsible for the N‐glycosylation of nascent proteins. Known to be related to autosomal recessive mental retardation for several years, TUSC3 has only recently been identified as a potential tumour suppressor gene. Based on the structure and function of TUSC3, specific mechanisms in various diseases have been investigated. Several studies have demonstrated that TUSC3 is an Mg2+‐transporter involved in magnesium transport and homeostasis, which is important for learning and memory, embryonic development and testis maturation. Moreover, dysfunction or deletion of TUSC3 exerts its oncological effects as a modulator by inhibiting glycosylation efficiency and consequently inducing endoplasmic reticulum stress and malignant cell transformation. In this study, we summarize the advances in the studies of TUSC3 and comment on the potential roles of TUSC3 in diagnosis and treatment of TUSC3‐related diseases, especially cancer.
Collapse
Affiliation(s)
- Xinshuang Yu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chunjuan Zhai
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, China
| | - Yujun Fan
- Medical Management Service Center of Shandong Provincial Health and Family Planning Commission, Jinan, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ning Liang
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Fengjun Liu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lili Cao
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jia Wang
- China Institute of Veterinary Drugs Control, Beijing, China
| | - Juan Du
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
24
|
Collak FK, Demir U, Ozkanli S, Kurum E, Zerk PE. Increased expression of YAP1 in prostate cancer correlates with extraprostatic extension. Cancer Biol Med 2017; 14:405-413. [PMID: 29372107 PMCID: PMC5785163 DOI: 10.20892/j.issn.2095-3941.2017.0083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective: Yes associated protein 1 (YAP1) is a member of the Hippo pathway, acting as a transcriptional coactivator. To elucidate the role of YAP1 and phosphorylated (p)YAP1 in prostate cancer (PCa) tumorigenesis, we investigated their expression in clinical samples of PCa and cell lines. Methods: Fifty-four tumor, adjacent nontumor, and prostate intraepithelial neoplasia (PIN) tissues from patients with PCa after radical prostatectomy were selected from a retrospective cohort and studied using immunohistochemistry (IHC). Protein and mRNA expression levels of YAP1 were evaluated by Western blot analysis and quantitative real-time reverse transcription PCR, respectively, in cancer cell lines. Publicly available gene expression datasets were downloaded to analyze YAP1 mRNA and protein levels in PCa tissue samples. Results: IHC analysis of PCa tissues revealed that YAP1 staining intensities were moderate to weak in the nucleus and cytoplasm of tumor cells, whereas adjacent normal epithelia showed strong staining. We observed that benign prostates were characterized by higher expression levels of both nuclear (P=0.004) and cytosolic (P=0.005) YAP1. pYAP1 staining was weak in the cytoplasm and absent in the nucleus of all the tissues investigated. YAP1 expression was an indicator of extraprostatic extension (EPE). The level of YAP1 was negatively correlated with the level of the androgen receptor (AR) in The Cancer Genome Atlas dataset and Western blot analysis of cell lines.
Conclusions: Our study suggested that YAP1 expression is heterogeneous in PCa tissue samples; therefore, YAP1 might play different roles in different aspects of PCa progression. This might involve AR–YAP1 interplay in PCa.
Collapse
Affiliation(s)
- Filiz Kisaayak Collak
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Ummuhan Demir
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Seyma Ozkanli
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Esra Kurum
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Pinar Engin Zerk
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul 34700, Turkey
| |
Collapse
|
25
|
Jiang Z, Guo M, Zhang X, Yao L, Shen J, Ma G, Liu L, Zhao L, Xie C, Liang H, Wang H, Zhu M, Hu L, Song Y, Shen H, Lin Z. TUSC3 suppresses glioblastoma development by inhibiting Akt signaling. Tumour Biol 2016; 37:12039-12047. [PMID: 27177902 DOI: 10.1007/s13277-016-5072-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiform is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and progression of GBM are elusive and controversial. The function of tumor suppressor candidate 3 (TUSC3) has not been previously characterized in GBM. TUSC3 was originally identified as part of an enzyme complex involved in N-glycosylation of proteins, but was recently implicated as a potential tumor suppressor gene in a variety of cancer types. In this study, we demonstrated that the expression levels of TUSC3 were downregulated in both GBM tissues and cells, and also found that overexpression of TUSC3 inhibits GBM cell proliferation and invasion. In addition, the effects of increased levels of methylation on the TUSC3 promoter were responsible for decreased expression of TUSC3 in GBM. Finally, we determined that TUSC3 regulates proliferation and invasion of GBM cells by inhibiting the activity of the Akt signaling pathway.
Collapse
Affiliation(s)
- Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangtong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Shen
- Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Guizhen Ma
- Department of Operating Rooms, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Liwei Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Minwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Yuanyuan Song
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
26
|
Gu Y, Wang Q, Guo K, Qin W, Liao W, Wang S, Ding Y, Lin J. TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK signalling. J Pathol 2016; 239:60-71. [PMID: 27071482 DOI: 10.1002/path.4697] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/25/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is the second leading cause of cancer death in humans. Tumour suppressor candidate 3 (TUSC3) plays an important role in embryogenesis and metabolism. Deletion of TUSC3 often causes non-syndromic mental retardation. Even though TUSC3 deregulation is frequently observed in epithelial cancers, the function of TUSC3 in CRC has remained unknown. In this study, we observed greater expression of TUSC3 at the mRNA and protein level in clinical colorectal tumour samples compared with paired normal tissues. Gain- and loss-of-function analyses were performed to evaluate the functional significance of TUSC3 in CRC initiation and progression. Immunoblotting, immunofluorescence, and co-immunoprecipitation analyses were used to identify potential pathways with which TUSC3 might be involved. Overexpression of TUSC3 in CRC cells induced epithelial-mesenchymal transition (EMT) in CRC cells, accompanied by down-regulation of the epithelial marker, E-cadherin, and up-regulation of the mesenchymal marker, vimentin. Increased proliferation, migration, and invasion, as well as accelerated xenograft tumour growth, were observed in TUSC3-overexpressing CRC cells, while opposite effects were achieved in TUSC3-silenced cells. In conclusion, our study demonstrated the oncogenic role of TUSC3 in CRC and showed that TUSC3 may be responsible for alternations in the proliferation ability, aggressiveness, and invasive/metastatic potential of CRC through regulating the MAPK, PI3K/Akt, and Wnt/β-catenin signalling pathways.
Collapse
Affiliation(s)
- Ye Gu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| | - Qian Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| | - Kang Guo
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| | - Weizhao Qin
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Department of Pathology, School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou, PR China
| |
Collapse
|
27
|
Fan X, Zhang X, Shen J, Zhao H, Yu X, Chen Y, Zhuang Z, Deng X, Feng H, Wang Y, Peng L. Decreased TUSC3 Promotes Pancreatic Cancer Proliferation, Invasion and Metastasis. PLoS One 2016; 11:e0149028. [PMID: 26871953 PMCID: PMC4752499 DOI: 10.1371/journal.pone.0149028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is an aggressive disease with dismal prognosis. It is of paramount importance to understand the underlying etiological mechanisms and identify novel, consistent, and easy-to-apply prognostic factors for precision therapy. TUSC3 (tumor suppressor candidate 3) was identified as a potential tumor suppressor gene and previous study showed TUSC3 is decreased in pancreatic cancer at mRNA level, but its putative tumor suppressor function remains to be verified. In this study, TUSC3 expression was found to be suppressed both at mRNA and protein levels in cell line models as well as in clinical samples; decreased TUSC3 expression was associated with higher pathological TNM staging and poorer outcome. In three pairs of cell lines with different NF-κB activity, TUSC3 expression was found to be reversely correlated with NF-κB activity. TUSC3-silenced pancreatic cancer cell line exhibited enhanced potential of proliferation, migration and invasion. In an orthotopic implanted mice model, TUSC3 silenced cells exhibited more aggressive phenotype with more liver metastasis. In conclusion, the current study shows that decreased immunological TUSC3 staining is a factor prognostic of poor survival in pancreatic cancer patients and decreased TUSC3 promotes pancreatic cancer cell proliferation, invasion and metastasis. The reverse correlation between NF-κB activity and TUSC3 expression may suggest a novel regulation pattern for this molecule.
Collapse
Affiliation(s)
- Xiaoqiang Fan
- Department of Oncology, Jimin Hospital, Shanghai, China
| | - Xiu Zhang
- Department of Oncology, Jimin Hospital, Shanghai, China
| | - Jie Shen
- Department of Oncology, Jimin Hospital, Shanghai, China
- * E-mail:
| | - Haibin Zhao
- Department of Pathology, Taihu Hospital, Wuxi, Jiangsu Province, China
| | - Xuetao Yu
- Department of Oncology, Jimin Hospital, Shanghai, China
| | - Yong’an Chen
- Department of Oncology, Jimin Hospital, Shanghai, China
| | - Zhuonan Zhuang
- Department of General Surgery, Shandong University Affiliated Qilu Hospital, Ji’nan, Shandong Province, China
| | - Xiaolong Deng
- Department of Oncology, Jimin Hospital, Shanghai, China
| | - Hua Feng
- Department of Oncology, Jimin Hospital, Shanghai, China
| | - Yunfei Wang
- Department of Oncology, Jimin Hospital, Shanghai, China
| | - Long Peng
- Department of Oncology, Jimin Hospital, Shanghai, China
| |
Collapse
|
28
|
Zeng H, Xu W. Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERα-positive breast tumorigenesis. Genes Dev 2016; 29:2153-67. [PMID: 26494790 PMCID: PMC4617979 DOI: 10.1101/gad.268722.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Zeng and Xu discovered that Ctr9, a key subunit of hPAFc, is a central regulator of estrogen signaling that drives ERα+ breast tumorigenesis, rendering it a potential target for the treatment of ERα+ breast cancer. The human RNA polymerase II (RNAPII)-associated factor complex (hPAFc) and its individual subunits have been implicated in human diseases, including cancer. However, its involvement in breast cancer awaits investigation. Using data mining and human breast cancer tissue microarrays, we found that Ctr9, the key scaffold subunit in hPAFc, is highly expressed in estrogen receptor α-positive (ERα+) luminal breast cancer, and the high expression of Ctr9 correlates with poor prognosis. Knockdown of Ctr9 in ERα+ breast cancer cells almost completely erased estrogen-regulated transcriptional response. At the molecular level, Ctr9 enhances ERα protein stability, promotes recruitment of ERα and RNAPII, and stimulates transcription elongation and transcription-coupled histone modifications. Knockdown of Ctr9, but not other hPAFc subunits, alters the morphology, proliferative capacity, and tamoxifen sensitivity of ERα+ breast cancer cells. Together, our study reveals that Ctr9, a key subunit of hPAFc, is a central regulator of estrogen signaling that drives ERα+ breast tumorigenesis, rendering it a potential target for the treatment of ERα+ breast cancer.
Collapse
Affiliation(s)
- Hao Zeng
- McArdle Laboratory for Cancer Research, Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
29
|
SHh-Gli1 signaling pathway promotes cell survival by mediating baculoviral IAP repeat-containing 3 (BIRC3) gene in pancreatic cancer cells. Tumour Biol 2016; 37:9943-50. [PMID: 26815504 DOI: 10.1007/s13277-016-4898-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022] Open
Abstract
The abnormally activated hedgehog (Hh) signaling pathway is involved in the regulation of proliferation and apoptosis in pancreatic cancer cells, while its exact molecular mechanism is not clear. The purpose of this study was to investigate the regulatory effect of Hh signaling pathway on the transcription of BIRC3 gene and its underlying mechanism in pancreatic cancer cells, as well as the relationship between the Gli1-dependent BIRC3 transcription and cell survival. Firstly, we examined the effect of knockdown or overexpression of Hh on BIRC3 messenger RNA (mRNA) expression by real-time RT-PCR. Then, the regulatory mechanism of Gli1 to BIRC3 gene transcription was investigated by XChIP-PCR and luciferase assays. Finally, the cell survival mediated by the Gli1-dependent BIRC3 transcription was studied by MTT and annexin V-FITC/propidiumiodide (PI) assays. We found that the expression level of BIRC3 mRNA was positively correlated to SHh/Gli1 signaling activation in three pancreatic cancer cell lines. The XChIP-PCR and luciferase assays data showed that the transcription factor Gli1 bound to some enhancers within the promoter regions of BIRC3 gene and promoted gene transcription. The cell proliferation was increased significantly by SHh/Gli1 expression while the apoptotic rate was reduced under the same condition. Moreover, BIRC3 knockdown inhibited cell proliferation and survival induced by SHh overexpression. Our study reveals that Gli1 promoted transcription of BIRC3 gene via cis-acting elements and the SHh-Gli1 signaling pathway maintained cell survival partially through this Gli1-dependent BIRC3 model in pancreatic cancer cells.
Collapse
|
30
|
Nguyen Q, Anders RA, Alpini G, Bai H. Yes-associated protein in the liver: Regulation of hepatic development, repair, cell fate determination and tumorigenesis. Dig Liver Dis 2015; 47:826-35. [PMID: 26093945 DOI: 10.1016/j.dld.2015.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
The liver is a vital organ that plays a major role in many bodily functions from protein production and blood clotting to cholesterol, glucose and iron metabolism and nutrition storage. Maintenance of liver homeostasis is critical for these essential bodily functions and disruption of liver homeostasis causes various kinds of liver diseases, some of which have high mortality rate. Recent research advances of the Hippo signalling pathway have revealed its nuclear effector, Yes-associated protein, as an important regulator of liver development, repair, cell fate determination and tumorigenesis. Therefore, a precise control of Yes-associated protein activity is critical for the maintenance of liver homeostasis. This review is going to summarize the discoveries on how the manipulation of Yes-associated protein activity affects liver homeostasis and induces liver diseases and the regulatory mechanisms that determine the Yes-associated protein activity in the liver. Finally, we will discuss the potential of targeting Yes-associated protein as therapeutic strategies in liver diseases.
Collapse
Affiliation(s)
- Quy Nguyen
- Research, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Digestive Diseases Research Center, BaylorScott&White Healthcare, Temple, TX, United States; Department of Internal Medicine and Medical Physiology, Texas A&M Health Science Center, Temple, TX, United States
| | - Haibo Bai
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Digestive Diseases Research Center, BaylorScott&White Healthcare, Temple, TX, United States; Department of Internal Medicine and Medical Physiology, Texas A&M Health Science Center, Temple, TX, United States.
| |
Collapse
|
31
|
Bi HX, Shi HB, Zhang T, Cui G. PRDM14 promotes the migration of human non-small cell lung cancer through extracellular matrix degradation in vitro. Chin Med J (Engl) 2015; 128:373-7. [PMID: 25635434 PMCID: PMC4837869 DOI: 10.4103/0366-6999.150109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: As a novel molecular markerof non-small cell lung cancer (NSCLC), PRDI-BF1 and RIZ homology domain containing protein 14 (PRDM14) is over-expressed in NSCLC tumor tissues. Extracellular matrix degradation mediated by the balance between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) is one of the most important mechanism in lung cancer metastasis. This study aimed to determine if PRDM14 promoted the migration of NSCLC cells through extracellular matrix degradation mediated by change of MMP/TIMP expression. Methods: The expression of PRDM14 was down-regulated in human cell line A 549 after transfection with lentiviral vector-mediated short-hairpin ribonucleic acids (shRNAs) which targeted the PRDM14 promoter. Cellular migration of shRNA-infected cells was detected by a scratch wound healing assay and transwell cell migration assay. Expression levels of MMP1, MMP2, TIMP1, and TIMP2 were measured by quantitative real-time polymerase chain reaction (RT-PCR). Results: Migration of PRDM14-shRNA-infected cells was significantly inhibited relative to control cells as measured by the scratch wound healing (P < 0.05) and transwell cell migration assays (P < 0.01). The expression of MMP1 in A549 cells infected by PRDM14-shRNA was down-regulated significantly (P < 0.01), whereas the expression of TIMP1 and TIMP2 was up-regulated significantly (P < 0.01). Conclusions: PRDM14 accelerates A549 cells migration in vitro through extracellular matrix degradation. PRDM14 is considered as a potential therapeutic target in metastatic NSCLC.
Collapse
Affiliation(s)
| | | | - Ting Zhang
- Department of Pathology, Program in Molecular and Translational Medicine, School of Medicine, Huzhou University, Huzhou, Zhejiang 313000, China
| | | |
Collapse
|
32
|
Chen C, Zhang Y, Loomis MM, Upton MP, Lohavanichbutr P, Houck JR, Doody DR, Mendez E, Futran N, Schwartz SM, Wang P. Genome-Wide Loss of Heterozygosity and DNA Copy Number Aberration in HPV-Negative Oral Squamous Cell Carcinoma and Their Associations with Disease-Specific Survival. PLoS One 2015; 10:e0135074. [PMID: 26247464 PMCID: PMC4527746 DOI: 10.1371/journal.pone.0135074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/17/2015] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell cancer of the oral cavity and oropharynx (OSCC) is associated with high case-fatality. For reasons that are largely unknown, patients with the same clinical and pathologic staging have heterogeneous response to treatment and different probability of recurrence and survival, with patients with Human Papillomavirus (HPV)-positive oropharyngeal tumors having the most favorable survival. To gain insight into the complexity of OSCC and to identify potential chromosomal changes that may be associated with OSCC mortality, we used Affymtrix 6.0 SNP arrays to examine paired DNA from peripheral blood and tumor cell populations isolated by laser capture microdissection to assess genome-wide loss of heterozygosity (LOH) and DNA copy number aberration (CNA) and their associations with risk factors, tumor characteristics, and oral cancer-specific mortality among 75 patients with HPV-negative OSCC. We found a highly heterogeneous and complex genomic landscape of HPV-negative tumors, and identified regions in 4q, 8p, 9p and 11q that seem to play an important role in oral cancer biology and survival from this disease. If confirmed, these findings could assist in designing personalized treatment or in the creation of models to predict survival in patients with HPV-negative OSCC.
Collapse
Affiliation(s)
- Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Yuzheng Zhang
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melissa M. Loomis
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melissa P. Upton
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Pawadee Lohavanichbutr
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John R. Houck
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David R. Doody
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eduardo Mendez
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Neal Futran
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Stephen M. Schwartz
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Pei Wang
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genetics and Genomics Sciences, Mt. Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
33
|
Radulovich N, Leung L, Ibrahimov E, Navab R, Sakashita S, Zhu CQ, Kaufman E, Lockwood WW, Thu KL, Fedyshyn Y, Moffat J, Lam WL, Tsao MS. Coiled-coil domain containing 68 (CCDC68) demonstrates a tumor-suppressive role in pancreatic ductal adenocarcinoma. Oncogene 2015; 34:4238-47. [PMID: 25381825 PMCID: PMC5153324 DOI: 10.1038/onc.2014.357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Using integrative genomics and functional screening, we identified coiled-coil domain containing 68 (CCDC68) as a novel putative tumor suppressor gene (TSG) in pancreatic ductal adenocarcinoma (PDAC). CCDC68 allelic losses were documented in 48% of primary PDAC patient tumors, 50% of PDAC cell lines and 30% of primary patient derived xenografts. We also discovered a single nucleotide polymorphism (SNP) variant (SNP rs1344011) that leads to exon skipping and generation of an unstable protein isoform CCDC68Δ(69-114) in 31% of PDAC patients. Overexpression of full length CCDC68 (CCDC68(wt)) in PANC-1 and Hs.766T PDAC cell lines lacking CDCC68 expression decreased proliferation and tumorigenicity in scid mice. In contrast, the downregulation of endogenous CCDC68 in MIAPaca-2 cells increased tumor growth rate. These effects were not observed with the deletion-containing isoform, CCDC68Δ(69-114).
Collapse
Affiliation(s)
- Nikolina Radulovich
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology Department, University of Toronto, Ontario, Canada
| | - Lisa Leung
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Emin Ibrahimov
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Chang-Qi Zhu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Ethan Kaufman
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - William W. Lockwood
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Kelsie L. Thu
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Yaroslav Fedyshyn
- Department of Molecular Genetics, Banting & Best Department of Medical Research, University of Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Banting & Best Department of Medical Research, University of Toronto, ON, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology Department, University of Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| |
Collapse
|
34
|
Pan D. YAPing Hippo Forecasts a New Target for Lung Cancer Prevention and Treatment. J Clin Oncol 2015; 33:2311-3. [PMID: 26056180 DOI: 10.1200/jco.2015.61.2093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Duojia Pan
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Garrido-Laguna I, Tometich D, Hu N, Ying J, Geiersbach K, Whisenant J, Wang K, Ross JS, Sharma S. N of 1 case reports of exceptional responders accrued from pancreatic cancer patients enrolled in first-in-man studies from 2002 through 2012. Oncoscience 2015; 2:285-93. [PMID: 25897431 PMCID: PMC4394134 DOI: 10.18632/oncoscience.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To identify exceptional responders among patients with advanced pancreatic cancer enrolled in first-in-man (FIM) studies. METHODS A Scopus search identified 66 FIM studies that enrolled at least one patient with advanced pancreatic cancer between 2002-2012. Descriptive statistics were used to summarize categorical variables. We also screened CRKL amplifications in the FoundationOne™ pancreatic cancer database. RESULTS Most FIM studies included targeted therapies (76 vs. 24%). The most common targeted therapy involved cell cycle inhibitors (24%). Pharmacodynamic analyses were more frequently done in trials with targeted therapies (70 vs. 31%, p=0.006). Response rates were similar. Treatment-related death was 0.5%. Skin, cardiovascular and metabolic grade 3-4 toxicities were more frequent with targeted therapies. Four exceptional responses were identified including a complete response to bosutinib (Src Inhibitor) and partial responses to trametinib (MEK inhibitor) (2 patients) and CHR-3996 (histone deacetylase inhibitor). We found that CRKL amplifications, a potential biomarker for Src inhibitors, are present in 1% of PDA. CONCLUSIONS We retrospectively identified extraordinary responses among patients with advanced PDA enrolled in FIM studies with Src, HDAC and MEK inhibitors. We identified CRKL amplifications are present in 1% of PDA and need to be evaluated as predictive biomarker for Src inhibitors.
Collapse
Affiliation(s)
- Ignacio Garrido-Laguna
- Departments of Internal Medicine (Division of Oncology), Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
- Center for Investigational Therapeutics, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Danielle Tometich
- Departments of Internal Medicine (Division of Oncology), Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Nan Hu
- Oncological Sciences, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Jian Ying
- Oncological Sciences, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | - Katherine Geiersbach
- Department of Pathology at Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| | | | - Kai Wang
- Foundation Medicine, Cambridge, Massachusetts
| | - Jeffrey S. Ross
- Foundation Medicine, Cambridge, Massachusetts
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Sunil Sharma
- Departments of Internal Medicine (Division of Oncology), Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
- Center for Investigational Therapeutics, Huntsman Cancer Institute and University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
36
|
Mao B, Gao Y, Bai Y, Yuan Z. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim Biophys Sin (Shanghai) 2015; 47:2-9. [PMID: 25476206 DOI: 10.1093/abbs/gmu109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Co-ordination of cell proliferation, differentiation, and apoptosis maintains tissue development and homeostasis under normal or stress conditions. Recently, the highly conserved Hippo signaling pathway, discovered in Drosophila melanogaster and mammalian system, has been implicated as a key regulator of organ size control. Importantly, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to maintain homeostasis at the cellular and organic levels. The mutation or deregulation of the key components in the pathway will result in degenerative disorder, developmental defects, or tumorigenesis. The purpose of this review is to summarize the recent findings and discuss how Hippo pathway responds to cellular stress and regulates early development events, tissue homeostasis as well as tumorigenesis.
Collapse
Affiliation(s)
- Beibei Mao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhao Gao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujie Bai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zengqiang Yuan
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Sinha A, Cherba D, Bartlam H, Lenkiewicz E, Evers L, Barrett MT, Haab BB. Mesenchymal-like pancreatic cancer cells harbor specific genomic alterations more frequently than their epithelial-like counterparts. Mol Oncol 2014; 8:1253-65. [PMID: 24837184 PMCID: PMC4198499 DOI: 10.1016/j.molonc.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023] Open
Abstract
The aggressiveness of pancreatic cancer is associated with the acquisition of mesenchymal characteristics by a subset of pancreatic cancer cells. The factors driving the development of this subset are not well understood. In this study, we tested the hypothesis that acquisition of a mesenchymal phenotype occurs selectively in tumor cells that harbor specific enabling genetic alterations. We obtained whole-genome comparative genomic hybridization (CGH) measurements on pancreatic cancer cell lines that have either an epithelial-like (17 cell lines) or a mesenchymal-like (9 cell lines) phenotype in vitro. The total amounts of amplifications and deletions were equivalent between the epithelial and mesenchymal groups, but 20 genes showed a major difference between the groups in prevalence of alterations. All 20 alterations (18 deletions and 2 amplifications) were more prevalent in the mesenchymal group, confirming the advanced nature of this cellular subtype. CDKN2A was altered in more than 50% of both groups, but co-deletions in neighboring genes, and concomitant loss of gene expression, were more prevalent in the mesenchymal group, suggesting that the size of the loss around CDKN2A affects cell phenotype. Whole-genome CGH on 11 primary cancer tissues revealed that the 20 genes were altered at a higher prevalence (up to 55% of the cases for certain genes) than randomly selected sets of 20 genes, with the same direction of alteration as in the cell lines. These findings support the concept that specific genetic alterations enable phenotype plasticity and provide promising candidate genes for further research.
Collapse
Affiliation(s)
- Arkadeep Sinha
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA; Genetics Program, Michigan State University, East Lansing, MI, USA
| | - David Cherba
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Heather Bartlam
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Elizabeth Lenkiewicz
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ, USA
| | - Lisa Evers
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ, USA
| | - Michael T Barrett
- Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ, USA
| | - Brian B Haab
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA; Genetics Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
38
|
Abstract
Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs and SCRIB. The location and interaction between the components of these complexes defines distinct structural domains of epithelial cells. Establishment and maintenance of apico-basal polarity is regulated through various conserved cell signalling pathways including TGF beta, Integrin and WNT signalling. Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an overview of the apico-basal polarity complexes and their regulation, their role in cell migration, and finally their involvement in carcinogenesis.
Collapse
Affiliation(s)
- Mohammed Khursheed
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500 001, India
| | | |
Collapse
|
39
|
Wang R, Zhang J, Ma Y, Chen L, Guo S, Zhang X, Ma Y, Wu L, Pei X, Liu S, Wang J, Hu H, Liu J. Association study of miR‑149 rs2292832 and miR‑608 rs4919510 and the risk of hepatocellular carcinoma in a large‑scale population. Mol Med Rep 2014; 10:2736-44. [PMID: 25190221 DOI: 10.3892/mmr.2014.2536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 06/05/2014] [Indexed: 11/06/2022] Open
Abstract
Polymorphisms in pre‑microRNAs (miRNAs) or mature miRNAs may influence miRNA processing or target binding, thus contributing to tumorigenesis and cancer development. The present study aimed to evaluate whether miR‑149 rs2292832 (C>T) and miR‑608 rs4919510 (G>C) are associated with the risk and clinical characteristics of hepatocellular carcinoma (HCC) in a large‑scale population. miR‑149 rs2292832 and miR‑608 rs4919510 were genotyped in a total of 993 patients with HCC and 992 unrelated healthy subjects by Sequenom MassARRAY. The results showed that, compared with the reference CC genotype, the TC+TT genotype of miR‑149 was more highly associated with HCC [CC vs. TC+TT: Odds ratio (OR)=1.384, 95% confidence interval (CI)=1.013‑1.892, P=0.041], and was also associated with an increased risk of hepatitis B virus (HBV)‑associated HCC (CC vs. TC+TT: OR=1.453, 95% CI=1.034‑2.042, P=0.031). However, no significant association between miRNA‑608 rs4919510 and the risk of HCC/HBV‑associated HCC was found. In addition, these two SNPs were shown not to be correlated with a range of clinical characteristics. The present study may provide an indicator for identification of the high risk of HCC in patients.
Collapse
Affiliation(s)
- Rui Wang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Linqi Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Shicheng Guo
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xiaojiao Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yunfang Ma
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Lijun Wu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiaoyu Pei
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Siran Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Heping Hu
- Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
40
|
Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure 2014; 22:590-601. [PMID: 24685145 DOI: 10.1016/j.str.2014.02.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/04/2023]
Abstract
N-linked glycosylation of proteins in the endoplasmic reticulum (ER) is essential in eukaryotes and catalyzed by oligosaccharyl transferase (OST). Human OST is a hetero-oligomer of seven subunits. The subunit N33/Tusc3 is a tumor suppressor candidate, and defects in the subunit N33/Tusc3 are linked with nonsyndromic mental retardation. Here, we show that N33/Tusc3 possesses a membrane-anchored N-terminal thioredoxin domain located in the ER lumen that may form transient mixed disulfide complexes with OST substrates. X-ray structures of complexes between N33/Tusc3 and two different peptides as model substrates reveal a defined peptide-binding groove adjacent to the active site that can accommodate peptides in opposite orientations. Structural and biochemical data show that N33/Tusc3 prefers peptides bearing a hydrophobic residue two residues away from the cysteine forming the mixed disulfide with N33/Tusc3. Our results support a model in which N33/Tusc3 increases glycosylation efficiency for a subset of human glycoproteins by slowing glycoprotein folding.
Collapse
|
41
|
Benetatos CA, Mitsuuchi Y, Burns JM, Neiman EM, Condon SM, Yu G, Seipel ME, Kapoor GS, Laporte MG, Rippin SR, Deng Y, Hendi MS, Tirunahari PK, Lee YH, Haimowitz T, Alexander MD, Graham MA, Weng D, Shi Y, McKinlay MA, Chunduru SK. Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models. Mol Cancer Ther 2014; 13:867-79. [PMID: 24563541 DOI: 10.1158/1535-7163.mct-13-0798] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acquisition of apoptosis resistance is a fundamental event in cancer development. Among the mechanisms used by cancer cells to evade apoptosis is the dysregulation of inhibitor of apoptosis (IAP) proteins. The activity of the IAPs is regulated by endogenous IAP antagonists such as SMAC (also termed DIABLO). Antagonism of IAP proteins by SMAC occurs via binding of the N-terminal tetrapeptide (AVPI) of SMAC to selected BIR domains of the IAPs. Small molecule compounds that mimic the AVPI motif of SMAC have been designed to overcome IAP-mediated apoptosis resistance of cancer cells. Here, we report the preclinical characterization of birinapant (TL32711), a bivalent SMAC-mimetic compound currently in clinical trials for the treatment of cancer. Birinapant bound to the BIR3 domains of cIAP1, cIAP2, XIAP, and the BIR domain of ML-IAP in vitro and induced the autoubiquitylation and proteasomal degradation of cIAP1 and cIAP2 in intact cells, which resulted in formation of a RIPK1:caspase-8 complex, caspase-8 activation, and induction of tumor cell death. Birinapant preferentially targeted the TRAF2-associated cIAP1 and cIAP2 with subsequent inhibition of TNF-induced NF-κB activation. The activity of a variety of chemotherapeutic cancer drugs was potentiated by birinapant both in a TNF-dependent or TNF-independent manner. Tumor growth in multiple primary patient-derived xenotransplant models was inhibited by birinapant at well-tolerated doses. These results support the therapeutic combination of birinapant with multiple chemotherapies, in particular, those therapies that can induce TNF secretion.
Collapse
Affiliation(s)
- Christopher A Benetatos
- Authors' Affiliations: TetraLogic Pharmaceuticals, 343 Phoenixville Pike, Malvern, Pennsylvania; and Tsinghua University School of Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mahmood SF, Gruel N, Nicolle R, Chapeaublanc E, Delattre O, Radvanyi F, Bernard-Pierrot I. PPAPDC1B and WHSC1L1 are common drivers of the 8p11-12 amplicon, not only in breast tumors but also in pancreatic adenocarcinomas and lung tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1634-1644. [PMID: 24051013 DOI: 10.1016/j.ajpath.2013.07.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 01/13/2023]
Abstract
Amplification of the 8p11-12 chromosomal region is a common genetic event in many epithelial cancers. In breast cancer, several genes within this region have been shown to display oncogenic activity. Among these genes, the enzyme-encoding genes, PPAPDC1B and WHSC1L1, have been identified as potential therapeutic targets. We investigated whether PPAPDC1B and WHSC1L1 acted as general driver genes, thereby serving as therapeutic targets in other tumors with 8p11-12 amplification. By using publicly available genomic data from a panel of 883 cell lines derived from different cancers, we identified the cell lines presenting amplification of both WHSC1L1 and PPAPDC1B. In particular, we focused on cell lines derived from lung cancer and pancreatic adenocarcinoma and found a correlation between the amplification of PPAPDC1B and WHSC1L1 with their overexpression. Loss-of-function studies based on the use of siRNA and shRNA demonstrated that PPAPDC1B and WHSC1L1 played a major role in regulating the survival of pancreatic adenocarcinoma and small-cell lung cancer-derived cell lines, both in anchorage-dependent and anchorage-independent conditions, displaying amplification and overexpression of these genes. We also demonstrated that PPAPDC1B and WHSC1L1 regulated xenograft growth in these cell lines. Finally, quantitative RT-PCR experiments after PPAPDC1B and WHSC1L1 knockdown revealed exclusive PPAPDC1B and WHSC1L1 gene targets in small-cell lung cancer and pancreatic adenocarcinoma-derived cell lines compared with breast cancer.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/genetics
- Chromosomes, Human, Pair 8/genetics
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Nuclear Proteins/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Phosphatidate Phosphatase/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
- Xenograft Model Antitumor Assays
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Sardar F Mahmood
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Nadège Gruel
- Research Center, Institut Curie, Paris, France; Translational Research Department, Institut Curie, Paris, France; National Institute of Health and Medical Research (INSERM), U830, Institut Curie, Paris, France
| | - Rémy Nicolle
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Elodie Chapeaublanc
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Olivier Delattre
- Research Center, Institut Curie, Paris, France; National Institute of Health and Medical Research (INSERM), U830, Institut Curie, Paris, France
| | - François Radvanyi
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Isabelle Bernard-Pierrot
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France.
| |
Collapse
|
43
|
Tumor suppressor candidate TUSC3 expression during rat testis maturation. Biosci Biotechnol Biochem 2013; 77:2019-24. [PMID: 24096664 DOI: 10.1271/bbb.130327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Analysis of microarray data obtained by comparing gene expression between 2-week-old infant and 7-week-old mature SD rat testes revealed novel targets involved in tumor suppression. Reverse-transcription polymerase chain reaction and Northern blotting indicated that Tusc3 gene expression was upregulated in the normal maturing testis and prostate and other organs such as the cerebrum and ovary. Tumor suppressor candidate 3 protein expression was detected in these same organs at a size of about 40 kDa, in accord with the predicted molecular size. In situ hybridization and immunohistochemistry showed that mRNA and protein localization were prevalent in the testis spermatocytes and interstitial cells such as the Leydig cells, as well as prostate epithelial cells. These data suggest that TUSC3 is deeply involved in spermatogenesis in the testis, inducing sperm differentiation and maturation, and plays a role in normal prostate development and tumor suppression.
Collapse
|
44
|
Dubrez L, Berthelet J, Glorian V. IAP proteins as targets for drug development in oncology. Onco Targets Ther 2013; 9:1285-304. [PMID: 24092992 PMCID: PMC3787928 DOI: 10.2147/ott.s33375] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inhibitors of apoptosis (IAPs) constitute a family of proteins involved in the regulation of
various cellular processes, including cell death, immune and inflammatory responses, cell
proliferation, cell differentiation, and cell motility. There is accumulating evidence supporting
IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to tumor
development, such as cell death, cell proliferation, and cell migration; their expression is
increased in a number of human tumor samples, and IAP overexpression has been correlated with tumor
growth, and poor prognosis or low response to treatment; and IAP expression can be rapidly induced
in response to chemotherapy or radiotherapy because of the presence of an internal ribosome entry
site (IRES)-dependent mechanism of translation initiation, which could contribute to resistance to
antitumor therapy. The development of IAP antagonists is an important challenge and was subject to
intense research over the past decade. Six molecules are currently in clinical trials. This review
focuses on the role of IAPs in tumors and the development of IAP-targeting molecules for anticancer
therapy.
Collapse
Affiliation(s)
- Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), Dijon, France ; Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|
45
|
Abstract
Cancer is fundamentally a genetic disease caused by the accumulation of somatic mutations in oncogenes and tumor suppressor genes. In the last decade, rapid advances in sequencing and bioinformatic technology led to an explosion in sequencing studies of cancer genomes, greatly expanding our knowledge of the genetic changes underlying a variety of tumor types. Several of these studies of cancer genomes have focused on pancreatic neoplasms, and cancers from the pancreas are some of the best characterized tumors at the genetic level. Pancreatic neoplasms encompass a wide array of clinical diseases, from benign cysts to deadly cancers, and the genetic alterations underlying neoplasms of the pancreas are similarly diverse. This new knowledge of pancreatic cancer genomes has deepened our understanding of tumorigenesis in the pancreas and has opened several promising new avenues for novel diagnostics and therapeutics.
Collapse
|
46
|
Cao Y, Zhang L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol Life Sci 2013; 70:2305-17. [PMID: 23007848 PMCID: PMC11113965 DOI: 10.1007/s00018-012-1170-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/17/2023]
Abstract
Since being discovered and intensively studied for over a decade, Smad ubiquitylation regulatory factor-1 (Smurf1) has been linked with several important biological pathways, including the bone morphogenetic protein pathway, the non-canonical Wnt pathway, and the mitogen-activated protein kinase pathway. Multiple functions of this ubiquitin ligase have been discovered in cell growth and morphogenesis, cell migration, cell polarity, and autophagy. Smurf1 is related to physiological manifestations in terms of age-dependent deficiency in bone formation and invasion of tumor cells. Smurf1-knockout mice have a significant phenotype in the skeletal system and considerable manifestations during embryonic development and neural outgrowth. In depth studying of Smurf1 will help us to understand the etiopathological mechanisms of related disorders. Here, we will summarize historical and recent studies on Smurf1, and discuss the E3 ligase-dependent and -independent functions of Smurf1. Moreover, intracellular regulations of Smurf1 and related physiological phenotypes will be described in this review.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850 China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning Province China
| |
Collapse
|
47
|
Khursheed M, Kolla JN, Kotapalli V, Gupta N, Gowrishankar S, Uppin SG, Sastry RA, Koganti S, Sundaram C, Pollack JR, Bashyam MD. ARID1B, a member of the human SWI/SNF chromatin remodeling complex, exhibits tumour-suppressor activities in pancreatic cancer cell lines. Br J Cancer 2013; 108:2056-2062. [PMID: 23660946 PMCID: PMC3670478 DOI: 10.1038/bjc.2013.200] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/08/2013] [Accepted: 04/08/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The human ATP-dependent SWItch/sucrose nonfermentable (SWI/SNF) complex functions as a primary chromatin remodeler during ontogeny, as well as in adult life. Several components of the complex have been suggested to function as important regulators of tumorigenesis in various cancers. In the current study, we have characterised a possible tumour suppressor role for the largest subunit of the complex, namely the AT-rich interaction domain 1B (ARID1B). METHODS We performed Azacytidine and Trichostatin A treatments, followed by bisulphite sequencing to determine the possible DNA methylation-induced transcription repression of the gene in pancreatic cancer (PaCa) cell lines. Functional characterisation of effect of ARID1B ectopic expression in MiaPaCa2 PaCa cell line, which harboured ARID1B homozygous deletion, was carried out. Finally, we evaluated ARID1B protein expression in pancreatic tumour samples using immunohistochemistry on a tissue microarray. RESULTS ARID1B was transcriptionally repressed due to promoter hypermethylation, and ectopic expression severely compromised the ability of MiaPaCa2 cells to form colonies in liquid culture and soft agar. In addition, ARID1B exhibited significantly reduced/loss of expression in PaCa tissue, especially in samples from advanced-stage tumours, when compared with normal pancreas. CONCLUSION The results therefore suggest a possible tumour-suppressor function for ARID1B in PaCa, thus adding to the growing list of SWI/SNF components with a similar function. Given the urgent need to design efficient targeted therapies for PaCa, our study assumes significance.
Collapse
Affiliation(s)
- M Khursheed
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - J N Kolla
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - V Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - N Gupta
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - S Gowrishankar
- Department of Histopathology, Apollo Hospitals, Hyderabad, India
| | - S G Uppin
- Nizam's Institute of Medical Sciences, Hyderabad, India
| | - R A Sastry
- Nizam's Institute of Medical Sciences, Hyderabad, India
| | - S Koganti
- Nizam's Institute of Medical Sciences, Hyderabad, India
| | - C Sundaram
- Nizam's Institute of Medical Sciences, Hyderabad, India
| | - J R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - M D Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
48
|
Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, Lee S, Lim DS. cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J 2013; 32:1543-55. [PMID: 23644383 DOI: 10.1038/emboj.2013.102] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/10/2013] [Indexed: 01/03/2023] Open
Abstract
Actin cytoskeletal damage induces inactivation of the oncoprotein YAP (Yes-associated protein). It is known that the serine/threonine kinase LATS (large tumour suppressor) inactivates YAP by phosphorylating its Ser127 and Ser381 residues. However, the events downstream of actin cytoskeletal changes that are involved in the regulation of the LATS-YAP pathway and the mechanism by which LATS differentially phosphorylates YAP on Ser127 and Ser381 in vivo have remained elusive. Here, we show that cyclic AMP (cAMP)-dependent protein kinase (PKA) phosphorylates LATS and thereby enhances its activity sufficiently to phosphorylate YAP on Ser381. We also found that PKA activity is involved in all contexts previously reported to trigger the LATS-YAP pathway, including actin cytoskeletal damage, G-protein-coupled receptor activation, and engagement of the Hippo pathway. Inhibition of PKA and overexpression of YAP cooperate to transform normal cells and amplify neural progenitor pools in developing chick embryos. We also implicate neurofibromin 2 as an AKAP (A-kinase-anchoring protein) scaffold protein that facilitates the function of the cAMP/PKA-LATS-YAP pathway. Our study thus incorporates PKA as novel component of the Hippo pathway.
Collapse
Affiliation(s)
- Minchul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology KAIST, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bernaldo de Quirós S, Merlo A, Secades P, Zambrano I, de Santa María IS, Ugidos N, Jantus-Lewintre E, Sirera R, Suarez C, Chiara MD. Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas. BMC Cancer 2013; 13:116. [PMID: 23497198 PMCID: PMC3606258 DOI: 10.1186/1471-2407-13-116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/07/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cytogenetic and gene expression analyses in head and neck squamous cell carcinomas (HNSCC) have allowed identification of genomic aberrations that may contribute to cancer pathophysiology. Nevertheless, the molecular consequences of numerous genetic alterations still remain unclear. METHODS To identify novel genes implicated in HNSCC pathogenesis, we analyzed the genomic alterations present in five HNSCC-derived cell lines by array CGH, and compared high level focal gene amplifications with gene expression levels to identify genes whose expression is directly impacted by these genetic events. Next, we knocked down TRPC6, one of the most highly amplified and over-expressed genes, to characterize the biological roles of TRPC6 in carcinogenesis. Finally, real time PCR was performed to determine TRPC6 gene dosage and mRNA levels in normal mucosa and human HNSCC tissues. RESULTS The data showed that the HNSCC-derived cell lines carry most of the recurrent genomic abnormalities previously described in primary tumors. High-level genomic amplifications were found at four chromosomal sites (11q21-q22.2, 18p11.31-p11.21, 19p13.2-p13.13, and 21q11) with associated gene expression changes in selective candidate genes suggesting that they may play an important role in the malignant behavior of HNSCC. One of the most dramatic alterations of gene transcription involved the TRPC6 gene (located at 11q21-q22.2) which has been recently implicated in tumour invasiveness. siRNA-induced knockdown of TRPC6 expression in HNSCC-derived cells dramatically inhibited HNSCC-cell invasion but did not significantly alter cell proliferation. Importantly, amplification and concomitant overexpression of TRPC6 was also found in HNSCC tumour samples. CONCLUSIONS Altogether, these data show that TRPC6 is likely to be a target for 11q21-22.2 amplification that confers enhanced invasive behavior to HNSCC cells. Therefore, TRPC6 may be a promising therapeutic target in the treatment of HNSCC.
Collapse
Affiliation(s)
- Sandra Bernaldo de Quirós
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vaňhara P, Horak P, Pils D, Anees M, Petz M, Gregor W, Zeillinger R, Krainer M. Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int J Oncol 2013; 42:1383-9. [PMID: 23404293 DOI: 10.3892/ijo.2013.1824] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/08/2013] [Indexed: 11/05/2022] Open
Abstract
Consequences of deregulated protein N-glycosylation on cancer pathogenesis are poorly understood. TUSC3 is a gene with a putative function in N-glycosylation, located on the short arm of chromosome 8. This is a chromosomal region of frequent genetic loss in ovarian cancer. We established recently that the expression of TUSC3 is epigenetically decreased in epithelial ovarian cancer compared to benign controls and provides prognostic information on patient survival. Therefore, we analyzed the consequences of silenced TUSC3 expression on proliferation, invasion and migration of ovarian cell lines. In addition, we performed subcellular fractionation, co-immunofluorescence and co-immunoprecipitation experiments to establish the molecular localization of TUSC3 in ovarian cancer cells. We demonstrated that TUSC3 is localized in the endoplasmic reticulum as a subunit of the oligosaccharyltransferase complex and is capable of modulation of glycosylation patterning of ovarian cancer cells. Most importantly, silencing of TUSC3 enhances proliferation and migration of ovarian cancer cells in vitro. Our observations suggest a role for N-glycosylating events in ovarian cancer pathogenesis in general, and identify TUSC3 as a tumor suppressor gene in ovarian cancer in particular.
Collapse
Affiliation(s)
- Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|