1
|
McKenna SM, Florea BI, Zisterer DM, van Kasteren SI, McGouran JF. Probing the metalloproteome: an 8-mercaptoquinoline motif enriches minichromosome maintenance complex components as significant metalloprotein targets in live cells. RSC Chem Biol 2024; 5:776-786. [PMID: 39092446 PMCID: PMC11289876 DOI: 10.1039/d4cb00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Affinity-based probes are valuable tools for detecting binding interactions between small molecules and proteins in complex biological environments. Metalloproteins are a class of therapeutically significant biomolecules which bind metal ions as part of key structural or catalytic domains and are compelling targets for study. However, there is currently a limited range of chemical tools suitable for profiling the metalloproteome. Here, we describe the preparation and application of a novel, photoactivatable affinity-based probe for detection of a subset of previously challenging to engage metalloproteins. The probe, bearing an 8-mercaptoquinoline metal chelator, was anticipated to engage several zinc metalloproteins, including the 26S-proteasome subunit Rpn11. Upon translation of the labelling experiment to mammalian cell lysate and live cell experiments, proteomic analysis revealed that several metalloproteins were competitively enriched. The diazirine probe SMK-24 was found to effectively enrich multiple components of the minichromosome maintenance complex, a zinc metalloprotein assembly with helicase activity essential to DNA replication. Cell cycle analysis experiments revealed that HEK293 cells treated with SMK-24 experienced stalling in G0/G1 phase, consistent with inactivation of the DNA helicase complex. This work represents an important contribution to the library of cell-permeable chemical tools for studying a collection of metalloproteins for which no previous probe existed.
Collapse
Affiliation(s)
- Sean M McKenna
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Bogdan I Florea
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
| | - Sander I van Kasteren
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
2
|
Marrugal Á, Ferrer I, Quintanal-Villalonga Á, Ojeda L, Pastor MD, García-Luján R, Carnero A, Paz-Ares L, Molina-Pinelo S. Inhibition of HSP90 in Driver Oncogene-Defined Lung Adenocarcinoma Cell Lines: Key Proteins Underpinning Therapeutic Efficacy. Int J Mol Sci 2023; 24:13830. [PMID: 37762133 PMCID: PMC10530904 DOI: 10.3390/ijms241813830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The use of 90 kDa heat shock protein (HSP90) inhibition as a therapy in lung adenocarcinoma remains limited due to moderate drug efficacy, the emergence of drug resistance, and early tumor recurrence. The main objective of this research is to maximize treatment efficacy in lung adenocarcinoma by identifying key proteins underlying HSP90 inhibition according to molecular background, and to search for potential biomarkers of response to this therapeutic strategy. Inhibition of the HSP90 chaperone was evaluated in different lung adenocarcinoma cell lines representing the most relevant molecular alterations (EGFR mutations, KRAS mutations, or EML4-ALK translocation) and wild-type genes found in each tumor subtype. The proteomic technique iTRAQ was used to identify proteomic profiles and determine which biological pathways are involved in the response to HSP90 inhibition in lung adenocarcinoma. We corroborated the greater efficacy of HSP90 inhibition in EGFR mutated or EML4-ALK translocated cell lines. We identified proteins specifically and significantly deregulated after HSP90 inhibition for each molecular alteration. Two proteins, ADI1 and RRP1, showed independently deregulated molecular patterns. Functional annotation of the altered proteins suggested that apoptosis was the only pathway affected by HSP90 inhibition across all molecular subgroups. The expression of ADI1 and RRP1 could be used to monitor the correct inhibition of HSP90 in lung adenocarcinoma. In addition, proteins such as ASS1, ITCH, or UBE2L3 involved in pathways related to the inhibition of a particular molecular background could be used as potential response biomarkers, thereby improving the efficacy of this therapeutic approach to combat lung adenocarcinoma.
Collapse
Affiliation(s)
- Ángela Marrugal
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | | | - Laura Ojeda
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
| | - María Dolores Pastor
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| | - Ricardo García-Luján
- Respiratory Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
| | - Amancio Carnero
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Medical Oncology Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
- Medical School, Universidad Complutense, 28040 Madrid, Spain
| | - Sonia Molina-Pinelo
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| |
Collapse
|
3
|
Multiomics characterization implicates PTK7 in ovarian cancer EMT and cell plasticity and offers strategies for therapeutic intervention. Cell Death Dis 2022; 13:714. [PMID: 35977930 PMCID: PMC9386025 DOI: 10.1038/s41419-022-05161-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
Most patients with ovarian cancer (OC) are diagnosed at a late stage when there are very few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or an oncogenic addiction that can be targeted pharmacologically, unlike other types of cancer. Here, we identified protein tyrosine kinase 7 (PTK7) as a potential new therapeutic target in OC following a multiomics approach using genetic and pharmacological interventions. We performed proteomics analyses upon PTK7 knockdown in OC cells and identified novel downstream effectors such as synuclein-γ (SNCG), SALL2, and PP1γ, and these findings were corroborated in ex vivo primary samples using PTK7 monoclonal antibody cofetuzumab. Our phosphoproteomics analyses demonstrated that PTK7 modulates cell adhesion and Rho-GTPase signaling to sustain epithelial-mesenchymal transition (EMT) and cell plasticity, which was confirmed by high-content image analysis of 3D models. Furthermore, using high-throughput drug sensitivity testing (525 drugs) we show that targeting PTK7 exhibited synergistic activity with chemotherapeutic agent paclitaxel, CHK1/2 inhibitor prexasertib, and PLK1 inhibitor GSK461364, among others, in OC cells and ex vivo primary samples. Taken together, our study provides unique insight into the function of PTK7, which helps to define its role in mediating aberrant Wnt signaling in ovarian cancer.
Collapse
|
4
|
Gatius S, Jove M, Megino-Luque C, Albertí-Valls M, Yeramian A, Bonifaci N, Piñol M, Santacana M, Pradas I, Llobet-Navas D, Pamplona R, Matías-Guiu X, Eritja N. Metabolomic Analysis Points to Bioactive Lipid Species and Acireductone Dioxygenase 1 (ADI1) as Potential Therapeutic Targets in Poor Prognosis Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14122842. [PMID: 35740505 PMCID: PMC9220847 DOI: 10.3390/cancers14122842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Uterine serous carcinoma is considered a rare and aggressive variant of endometrial cancer that accounts for 10% of all endometrial cancers diagnosed but is responsible for 40% of endometrial cancer-related deaths. Unfortunately, current treatments for serous endometrial carcinoma are ineffective. Therefore, there is a need to find new therapeutic targets. The aim of this study was to analyse the metabolic profile of serous cancer in order to identify new molecules and thereby define potential therapeutic targets. We observed that most of the differential metabolites are lipid species (suggesting the important role of the lipid metabolism). In addition, we found an increase in 2-Oxo-4-methylthiobutanoic acid (synthesised by the ADI1 enzyme) in serous carcinomas. Using public database analysis and immunohistochemistry, we established a correlation between elevated ADI1 levels and serous carcinoma. Furthermore, the ectopic modification of ADI1 expression in vitro revealed the ability of ADI1 to induce pathological cell migration and invasion capabilities. Abstract Metabolomic profiling analysis has the potential to highlight new molecules and cellular pathways that may serve as potential therapeutic targets for disease treatment. In this study, we used an LC-MS/MS platform to define, for the first time, the specific metabolomic signature of uterine serous carcinoma (SC), a relatively rare and aggressive variant of endometrial cancer (EC) responsible for 40% of all endometrial cancer-related deaths. A metabolomic analysis of 31 ECs (20 endometrial endometrioid carcinomas (EECs) and 11 SCs) was performed. Following multivariate statistical analysis, we identified 232 statistically different metabolites among the SC and EEC patient samples. Notably, most of the metabolites identified (89.2%) were lipid species and showed lower levels in SCs when compared to EECs. In addition to lipids, we also documented metabolites belonging to amino acids and purine nucleotides (such as 2-Oxo-4-methylthiobutanoic acid, synthesised by acireductone dioxygenase 1 (ADI1) enzyme), which showed higher levels in SCs. To further investigate the role of ADI1 in SC, we analysed the expression protein levels of ADI1 in 96 ECs (67 EECs and 29 SCs), proving that the levels of ADI1 were higher in SCs compared to EECs. We also found that ADI1 mRNA levels were higher in p53 abnormal ECs compared to p53 wild type tumours. Furthermore, elevated ADI1 mRNA levels showed a statistically significant negative correlation with overall survival and progression-free survival among EEC patients. Finally, we tested the ability of ADI1 to induce migration and invasion capabilities in EC cell lines. Altogether, these results suggest that ADI1 could be a potential therapeutic target in poor-prognosis SCs and other Ecs with abnormal p53 expression.
Collapse
Affiliation(s)
- Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Correspondence: (S.G.); (N.E.); Tel.: +34-97370-5312 (S.G.); +34-97300-3750 (N.E.)
| | - Mariona Jove
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
| | - Andree Yeramian
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Nuria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Miquel Piñol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - Xavier Matías-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain
- Correspondence: (S.G.); (N.E.); Tel.: +34-97370-5312 (S.G.); +34-97300-3750 (N.E.)
| |
Collapse
|
5
|
Wei Y, Zhang D, Zuo Y. Whole-exome sequencing reveals genetic variations in humans with differential sensitivity to sevoflurane:A prospective observational study. Biomed Pharmacother 2022; 148:112724. [PMID: 35202912 DOI: 10.1016/j.biopha.2022.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The anesthesia sensitivity is heterogeneous both in animals and humans, while the underlying molecular mechanism has not yet been determined. Here, for the first time, we conducted a prospective observational study to test whether genetic variations contribute to the differential sensitivity to sevoflurane in humans. METHODS Five hundred patients who underwent abdominal surgeries were included. The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain Bispectral index (BIS) value between 40 and 60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery was calculated for each patient. These patients were further divided into high sensitivity group (mean - SD, H group) and low sensitivity group (mean + SD, L group) to investigate the genetic variants related to the differential sensitivity to sevoflurane by whole-exome sequencing (WES) and genome-wide association study (GWAS) in karyocyte from peripheral blood. RESULTS The mean ETsevo of these 500 patients was 1.60% ± 0.34%. After pairing, 55 patients from H group and 59 patients from L group were selected for WES (ETsevo of H group: 1.06% ± 0.13% vs. ETsevo of L group: 2.17% ± 0.16%, P < 0.001), respectively. Finally, FAT atypical cadherin 2 (FAT2, SNP rs174272, rs174271, and rs174261), acireductone dioxygenase 1 (ADI1, SNP rs117278), NEDD4 E3 ubiquitin protein ligase (NEDD4, SNP rs70048, rs70049, and rs70056), and FAD dependent oxidoreductase domain containing 2 (FOXRED2, SNP rs144281) were found to be associated with sevoflurane sensitivity. CONCLUSIONS Genetic variations may contribute to the differential sensitivity to sevoflurane among humans.
Collapse
Affiliation(s)
- Yiyong Wei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Huang P, Xu M, Han H, Zhao X, Li MD, Yang Z. Integrative Analysis of Epigenome and Transcriptome Data Reveals Aberrantly Methylated Promoters and Enhancers in Hepatocellular Carcinoma. Front Oncol 2021; 11:769390. [PMID: 34858848 PMCID: PMC8631276 DOI: 10.3389/fonc.2021.769390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is a key transcription regulator, whose aberration was ubiquitous and important in most cancers including hepatocellular carcinoma (HCC). Whole-genome bisulfite sequencing (WGBS) was conducted for comparison of DNA methylation in tumor and adjacent tissues from 33 HCC patients, accompanying RNA-seq to determine differentially methylated region-associated, differentially expressed genes (DMR-DEGs), which were independently replicated in the TCGA-LIHC cohort and experimentally validated via 5-aza-2-deoxycytidine (5-azadC) demethylation. A total of 9,867,700 CpG sites showed significantly differential methylation in HCC. Integrations of mRNA-seq, histone ChIP-seq, and WGBS data identified 611 high-confidence DMR-DEGs. Enrichment analysis demonstrated activation of multiple molecular pathways related to cell cycle and DNA repair, accompanying repression of several critical metabolism pathways such as tyrosine and monocarboxylic acid metabolism. In TCGA-LIHC, we replicated about 53% of identified DMR-DEGs and highlighted the prognostic significance of combinations of methylation and expression of nine DMR-DEGs, which were more efficient prognostic biomarkers than considering either type of data alone. Finally, we validated 22/23 (95.7%) DMR-DEGs in 5-azadC-treated LO2 and/or HepG2 cells. In conclusion, integration of epigenome and transcriptome data depicted activation of multiple pivotal cell cycle-related pathways and repression of several metabolic pathways triggered by aberrant DNA methylation of promoters and enhancers in HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 2020; 9:cells9081904. [PMID: 32824193 PMCID: PMC7463463 DOI: 10.3390/cells9081904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.
Collapse
|
8
|
Reilley DJ, Hennefarth MR, Alexandrova AN. The Case for Enzymatic Competitive Metal Affinity Methods. ACS Catal 2020; 10:2298-2307. [PMID: 34012720 PMCID: PMC8130888 DOI: 10.1021/acscatal.9b04831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Matthew R Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
9
|
Ye N, Jiang N, Feng C, Wang F, Zhang H, Bai HX, Yang L, Su Y, Huang C, Wanggou S, Li X. Combined Therapy Sensitivity Index Based on a 13-Gene Signature Predicts Prognosis for IDH Wild-type and MGMT Promoter Unmethylated Glioblastoma Patients. J Cancer 2019; 10:5536-5548. [PMID: 31632497 PMCID: PMC6775685 DOI: 10.7150/jca.30614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/25/2019] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the lethal tumors with poor prognosis. However, prognostic prediction approaches need to be further explored. Therefore, we developed an evaluation system that could be used for prognostic prediction of GBM patients. Published mRNA expression datasets from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA) were analyzed. Quantitative Realtime-PCR of signature genes and molecular aberrations of 178 Xiangya GBM patients were used for confirmation. Gene set enrichment analysis (GSEA) was performed for functional annotation. As a result, we established a 13-gene signature which named Combined Therapy Sensitivity Index (CTSI). Based on a cutoff point, we divided patients into high-risk group and low-risk group. Based on Kaplan-Meier analysis and multivariate Cox regression analysis, we found that patients in the high-risk group had a shorter overall survival time than patients in the low-risk group (p<0.001 in TCGA and CGGA datasets, p=0.047 in GSE4271 dataset, p=0.008 in Xiangya GBM cohort, HR: 1.65-3.42). By comparing the status of IDH mutation, TERT promoter mutation (TERTp-mut) and MGMT promoter methylation, CTSI was predictable in IDH wild-type (IDH-wt)/MGMT promoter unmethylated (MGMTp-unmeth) patients (p=0.037 in IDH-wt/TERTp-mut/MGMTp-unmeth subgroup, HR: 1.98; p=0.032 in IDH-wt/TERTp-wt/MGMTp-unmeth subgroup, HR: 2.09). Based on GESA, the Gene Ontology (GO) gene sets were enriched differently between CTSI high-risk and low-risk groups. Our results showed CTSI risk score can predict the prognosis of IDH-wt/MGMTp-unmeth GBM patients. Based on CTSI, combined with the status of IDH mutation, TERT promoter mutation and MGMT promoter methylation, a stepwise prognosis evaluation system which can provide precise prognosis prediction for GBM patients was established.
Collapse
Affiliation(s)
- Ningrong Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nian Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengyuan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feiyifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hanwen Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Harrusin Xiao Bai
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Li Yang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yandong Su
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhai Huang
- Department of Neurosurgery, The First Affiliated Hospital of Jishou University, Jishou, Hunan China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Abstract
Multiple factors involving the methionine salvage pathway (MSP) and polyamine biosynthesis have been found to be involved in cancer cell proliferation, migration, invasion and metastasis. This review summarizes the relationships of the MSP enzyme acireductone dioxygenase (ARD), the ADI1 gene encoding ARD and other gene products (ADI1GP) with carcinomas and carcinogenesis. ARD exhibits structural and functional differences depending upon the metal bound in the active site. In the penultimate step of the MSP, the Fe2+ bound form of ARD catalyzes the on-pathway oxidation of acireductone leading to methionine, whereas Ni2+ bound ARD catalyzes an off-pathway reaction producing methylthiopropionate and carbon monoxide, a biological signaling molecule and anti-apoptotic. The relationship between ADI1GP, MSP and polyamine synthesis are discussed, along with possible role(s) of metal in modulating the cellular behavior of ADI1GP and its interactions with other cellular components.
Collapse
|
11
|
The methionine salvage pathway-involving ADI1 inhibits hepatoma growth by epigenetically altering genes expression via elevating S-adenosylmethionine. Cell Death Dis 2019; 10:240. [PMID: 30858354 PMCID: PMC6411897 DOI: 10.1038/s41419-019-1486-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
The 5′-methylthioadenosine (MTA) cycle-participating human acireductone dioxygenase 1 (ADI1) has been implicated as a tumor suppressor in prostate cancer, yet its role remains unclear in hepatocellular carcinoma (HCC). Here, we demonstrated a significant reduction of ADI1, either in protein or mRNA level, in HCC tissues. Additionally, higher ADI1 levels were associated with favorable postoperative recurrence-free survival in HCC patients. By altering ADI1 expression in HCC cells, a negative correlation between ADI1 and cell proliferation was observed. Cell-based and xenograft experiments were performed by using cells overexpressing ADI1 mutants carrying mutations at the metal-binding sites (E94A and H133A, respectively), which selectively disrupted differential catalytic steps, resulting in staying or leaving the MTA cycle. The results showed that the growth suppression effect was mediated by accelerating the MTA cycle. A cDNA microarray analysis followed by verification experiments identified that caveolin-1 (CAV1), a growth-promoting protein in HCC, was markedly decreased upon ADI1 overexpression. Suppression of CAV1 expression was mediated by an increase of S-adenosylmethionine (SAMe) level. The methylation status of CAV1 promoter was significantly altered upon ADI1 overexpression. Finally, a genome-wide methylation analysis revealed that ADI1 overexpression altered promoter methylation profiles in a set of cancer-related genes, including CAV1 and genes encoding antisense non-coding RNAs, long non-coding RNAs, and microRNAs, resulting in significant changes of their expression levels. In conclusion, ADI1 expression promoted MTA cycle to increase SAMe levels, which altered genome-wide promoter methylation profiles, resulting in altered gene expression and HCC growth suppression.
Collapse
|
12
|
Ivan DA, Gremillion AJ, Sanchez A, Sanchez S, Lynch VM, Toledo SA. The first structural model for the resting state of the active site of nickel acireductone dioxygenase (Ni-ARD). INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Chung J, Zhang X, Allen M, Wang X, Ma Y, Beecham G, Montine TJ, Younkin SG, Dickson DW, Golde TE, Price ND, Ertekin-Taner N, Lunetta KL, Mez J, Alzheimer’s Disease Genetics Consortium, Mayeux R, Haines JL, Pericak-Vance MA, Schellenberg G, Jun GR, Farrer LA. Genome-wide pleiotropy analysis of neuropathological traits related to Alzheimer's disease. Alzheimers Res Ther 2018; 10:22. [PMID: 29458411 PMCID: PMC5819208 DOI: 10.1186/s13195-018-0349-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Simultaneous consideration of two neuropathological traits related to Alzheimer's disease (AD) has not been attempted in a genome-wide association study. METHODS We conducted genome-wide pleiotropy analyses using association summary statistics from the Beecham et al. study (PLoS Genet 10:e1004606, 2014) for AD-related neuropathological traits, including neuritic plaque (NP), neurofibrillary tangle (NFT), and cerebral amyloid angiopathy (CAA). Significant findings were further examined by expression quantitative trait locus and differentially expressed gene analyses in AD vs. control brains using gene expression data. RESULTS Genome-wide significant pleiotropic associations were observed for the joint model of NP and NFT (NP + NFT) with the single-nucleotide polymorphism (SNP) rs34487851 upstream of C2orf40 (alias ECRG4, P = 2.4 × 10-8) and for the joint model of NFT and CAA (NFT + CAA) with the HDAC9 SNP rs79524815 (P = 1.1 × 10-8). Gene-based testing revealed study-wide significant associations (P ≤ 2.0 × 10-6) for the NFT + CAA outcome with adjacent genes TRAPPC12, TRAPPC12-AS1, and ADI1. Risk alleles of proxy SNPs for rs79524815 were associated with significantly lower expression of HDAC9 in the brain (P = 3.0 × 10-3), and HDAC9 was significantly downregulated in subjects with AD compared with control subjects in the prefrontal (P = 7.9 × 10-3) and visual (P = 5.6 × 10-4) cortices. CONCLUSIONS Our findings suggest that pleiotropy analysis is a useful approach to identifying novel genetic associations with complex diseases and their endophenotypes. Functional studies are needed to determine whether ECRG4 or HDAC9 is plausible as a therapeutic target.
Collapse
Affiliation(s)
- Jaeyoon Chung
- Bioinformatics Graduate Program, Boston University, Boston, MA USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL USA
| | - Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA USA
| | - Gary Beecham
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL USA
| | | | | | | | - Todd E. Golde
- Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL USA
| | - Nathan D. Price
- Institute for Systems Biology, University of Washington, Seattle, WA USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, MA USA
| | - Alzheimer’s Disease Genetics Consortium
- Bioinformatics Graduate Program, Boston University, Boston, MA USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL USA
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL USA
- Department of Pathology, University of Washington, Seattle, WA USA
- Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL USA
- Institute for Systems Biology, University of Washington, Seattle, WA USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
- Department of Neurology, Boston University School of Medicine, Boston, MA USA
- Department of Neurology and Sergievsky Center, Columbia University, New York, NY USA
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
- Neurogenetics and Integrated Genomics, Andover Innovative Medicines Institute, Eisai Inc., Andover, MA USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| | - Richard Mayeux
- Department of Neurology and Sergievsky Center, Columbia University, New York, NY USA
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH USA
| | | | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Gyungah R. Jun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA USA
- Neurogenetics and Integrated Genomics, Andover Innovative Medicines Institute, Eisai Inc., Andover, MA USA
| | - Lindsay A. Farrer
- Bioinformatics Graduate Program, Boston University, Boston, MA USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
- Department of Neurology, Boston University School of Medicine, Boston, MA USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| |
Collapse
|
14
|
Deshpande AR, Pochapsky TC, Ringe D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 2017; 117:10474-10501. [PMID: 28731690 DOI: 10.1021/acs.chemrev.7b00117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Thomas C Pochapsky
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Dagmar Ringe
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
15
|
Deshpande AR, Pochapsky TC, Petsko GA, Ringe D. Dual chemistry catalyzed by human acireductone dioxygenase. Protein Eng Des Sel 2017; 30:197-204. [PMID: 28062648 DOI: 10.1093/protein/gzw078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway of Klebsiella oxytoca is the only known naturally occurring metalloenzyme that catalyzes different reactions in vivo based solely on the identity of the divalent transition metal ion (Fe2+ or Ni2+) bound in the active site. The iron-containing isozyme catalyzes the cleavage of substrate 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, whereas the nickel-containing isozyme uses the same substrates to catalyze an off-pathway shunt to form methylthiopropionate, carbon monoxide and formate. This dual chemistry was recently demonstrated in vitro by ARD from Mus musculus (MmARD), providing the first example of a mammalian ARD exhibiting metal-dependent catalysis. We now show that human ARD (HsARD) is also capable of metal-dependent dual chemistry. Recombinant HsARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. As with MmARD, the Fe2+-bound HsARD shows the highest activity and catalyzes on-pathway chemistry, whereas Ni2+, Co2+ or Mn2+ forms catalyze off-pathway chemistry. The thermal stability of the HsARD isozymes is a function of the metal ion identity, with Ni2+-bound HsARD being the most stable followed by Co2+ and Fe2+, and Mn2+-bound HsARD being the least stable. As with the bacterial ARD, solution NMR data suggest that HsARD isozymes can have significant structural differences depending upon the metal ion bound.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Thomas C Pochapsky
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454, USA
| | - Gregory A Petsko
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dagmar Ringe
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
16
|
Li CQ, Huang GW, Wu ZY, Xu YJ, Li XC, Xue YJ, Zhu Y, Zhao JM, Li M, Zhang J, Wu JY, Lei F, Wang QY, Li S, Zheng CP, Ai B, Tang ZD, Feng CC, Liao LD, Wang SH, Shen JH, Liu YJ, Bai XF, He JZ, Cao HH, Wu BL, Wang MR, Lin DC, Koeffler HP, Wang LD, Li X, Li EM, Xu LY. Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma. Oncogenesis 2017; 6:e297. [PMID: 28194033 PMCID: PMC5337622 DOI: 10.1038/oncsis.2017.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy.
Collapse
Affiliation(s)
- C-Q Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - G-W Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Z-Y Wu
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Y-J Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - X-C Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Y-J Xue
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Y Zhu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - J-M Zhao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - M Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J-Y Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - F Lei
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Q-Y Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - S Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - C-P Zheng
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - B Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Z-D Tang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - C-C Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - L-D Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - S-H Wang
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - J-H Shen
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Y-J Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - X-F Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - J-Z He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - H-H Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - B-L Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - M-R Wang
- Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - D-C Lin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | - H P Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- National University Cancer Institute of Singapore, National University Health System and National University Hospital, Singapore, Singapore
| | - L-D Wang
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - X Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China. E-mail:
| | - E-M Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China. E-mail:
| | - L-Y Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China. E-mail:
| |
Collapse
|
17
|
Shahabi A, Lewinger JP, Ren J, April C, Sherrod AE, Hacia JG, Daneshmand S, Gill I, Pinski JK, Fan JB, Stern MC. Novel Gene Expression Signature Predictive of Clinical Recurrence After Radical Prostatectomy in Early Stage Prostate Cancer Patients. Prostate 2016; 76:1239-56. [PMID: 27272349 PMCID: PMC9015679 DOI: 10.1002/pros.23211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Current clinical tools have limited accuracy in differentiating patients with localized prostate cancer who are at risk of recurrence from patients with indolent disease. We aimed to identify a gene expression signature that jointly with clinical variables could improve upon the prediction of clinical recurrence after RP for patients with stage T2 PCa. METHODS The study population includes consented patients who underwent a radical retropubic prostatectomy (RP) and bilateral pelvic lymph node dissection at the University of Southern California in the PSA-era (1988-2008). We used a nested case-control study of 187 organ-confined patients (pT2N0M0): 154 with no recurrence ("controls") and 33 with clinical recurrence ("cases"). RNA was obtained from laser capture microdissected malignant glands representative of the overall Gleason score of each patient. Whole genome gene expression profiles (29,000 transcripts) were obtained using the Whole Genome DASL HT platform (Illumina, Inc). A gene expression signature of PCa clinical recurrence was identified using stability selection with elastic net regularized logistic regression. Three existing datasets generated with the Affymetrix Human Exon 1.0ST array were used for validation: Mayo Clinic (MC, n = 545), Memorial Sloan Kettering Cancer Center (SKCC, n = 150), and Erasmus Medical Center (EMC, n = 48). The areas under the ROC curve (AUCs) were obtained using repeated fivefold cross-validation. RESULTS A 28-gene expression signature was identified that jointly with key clinical variables (age, Gleason score, pre-operative PSA level, and operation year) was predictive of clinical recurrence (AUC of clinical variables only was 0.67, AUC of clinical variables, and 28-gene signature was 0.99). The AUC of this gene signature fitted in each of the external datasets jointly with clinical variables was 0.75 (0.72-0.77) (MC), 0.90 (0.86-0.94) (MSKCC), and 0.82 (0.74-0.91) (EMC), whereas the AUC for clinical variables only in each dataset was 0.72 (0.70-0.74), 0.86 (0.82-0.91), and 0.76 (0.67-0.85), respectively. CONCLUSIONS We report a novel gene-expression based classifier identified using agnostic approaches from whole genome expression profiles that can improve upon the accuracy of clinical indicators to stratify early stage localized patients at risk of clinical recurrence after RP. Prostate 76:1239-1256, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahva Shahabi
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Juan Pablo Lewinger
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Jie Ren
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
| | | | - Andy E. Sherrod
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Joseph G. Hacia
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of USC, Los Angeles, California
| | - Siamak Daneshmand
- Department of Urology and USC Institute of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Inderbir Gill
- Department of Urology and USC Institute of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Jacek K. Pinski
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, California
- AnchorDx Corporation, Guangzhou, China
| | - Mariana C. Stern
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Urology and USC Institute of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
- Correspondence to: Dr. Mariana C. Stern, University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Room 5421A, Los Angeles, CA 90089.
| |
Collapse
|
18
|
Zhang Y, Wang T, Yang K, Xu J, Ren L, Li W, Liu W. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation. Front Mol Neurosci 2016; 9:79. [PMID: 27630541 PMCID: PMC5005407 DOI: 10.3389/fnmol.2016.00079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Pathophysiology, Baotou Medical CollegeBaotou, China
| | - Ting Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ke Yang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ji Xu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Weiping Li
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| |
Collapse
|
19
|
Deshpande AR, Wagenpfeil K, Pochapsky TC, Petsko GA, Ringe D. Metal-Dependent Function of a Mammalian Acireductone Dioxygenase. Biochemistry 2016; 55:1398-407. [PMID: 26858196 PMCID: PMC5319410 DOI: 10.1021/acs.biochem.5b01319] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe(2+) or Ni(2+)) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate the metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, which is the penultimate step in methionine salvage. The nickel-bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO), and 3-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe(2+)-bound protein, which shows about 10-fold higher activity than that of others, catalyzes on-pathway chemistry, whereas the Ni(2+), Co(2+), or Mn(2+) forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by the metal ion identity, with Ni(2+)-bound MmARD being the most stable, followed by Co(2+) and Fe(2+), and Mn(2+)-bound ARD being the least stable. Ni(2+)- and Co(2+)-bound MmARD were crystallized, and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination, and the catalytic mechanism.
Collapse
Affiliation(s)
| | | | - Thomas C. Pochapsky
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454
| | - Gregory A. Petsko
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Dagmar Ringe
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454,Corresponding Author. To whom correspondence should be addressed. . Phone: 781-736-4902
| |
Collapse
|
20
|
SUN BOSHI, XIE CHANGMING, ZHENG TONGSEN, YIN DALONG, WANG JIABEI, LIANG YINGJIAN, LI YUEJIN, YANG GUANGCHAO, SHI HUAWEN, PEI TIEMIN, HAN JIHUA, LIU LIANXIN. Selecting molecular therapeutic drug targets based on the expression profiles of intrahepatic cholangiocarcinomas and miRNA-mRNA regulatory networks. Oncol Rep 2015; 35:382-90. [DOI: 10.3892/or.2015.4330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
|
21
|
Espín-Pérez A, de Kok TM, Jennen DG, Hendrickx DM, De Coster S, Schoeters G, Baeyens W, van Larebeke N, Kleinjans JC. Distinct genotype-dependent differences in transcriptome responses in humans exposed to environmental carcinogens. Carcinogenesis 2015; 36:1154-61. [DOI: 10.1093/carcin/bgv111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022] Open
|
22
|
Chou HY, Lin YH, Shiu GL, Tang HY, Cheng ML, Shiao MS, Pai LM. ADI1, a methionine salvage pathway enzyme, is required for Drosophila fecundity. J Biomed Sci 2014; 21:64. [PMID: 25037729 PMCID: PMC4115168 DOI: 10.1186/s12929-014-0064-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/08/2014] [Indexed: 12/02/2022] Open
Abstract
Background Methionine, an essential amino acid, is required for protein synthesis and normal cell metabolism. The transmethylation pathway and methionine salvage pathway (MTA cycle) are two major pathways regulating methionine metabolism. Recently, methionine has been reported to play a key role in Drosophila fecundity. Results Here, we revealed that the MTA cycle plays a crucial role in Drosophila fecundity using the mutant of aci-reductone dioxygenase 1 (DADI1), an enzyme in the MTA cycle. In dietary restriction condition, the egg production of adi1 mutant flies was reduced compared to that of control flies. This fecundity defect in mutant flies was rescued by reintroduction of Dadi1 gene. Moreover, a functional homolog of human ADI1 also recovered the reproduction defect, in which the enzymatic activity of human ADI1 is required for normal fecundity. Importantly, methionine supply rescued the fecundity defect in Dadi1 mutant flies. The detailed analysis of Dadi1 mutant ovaries revealed a dramatic change in the levels of methionine metabolism. In addition, we found that three compounds namely, methionine, SAM and Methionine sulfoxide, respectively, may be required for normal fecundity. Conclusions In summary, these results suggest that ADI1, an MTA cycle enzyme, affects fly fecundity through the regulation of methionine metabolism.
Collapse
|
23
|
Valdez CE, Gallup NM, Alexandrova AN. Co2+ acireductone dioxygenase: Fe2+ mechanism, Ni2+ mechanism, or something else? Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.04.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Structural and biochemical basis for the inhibition of cell death by APIP, a methionine salvage enzyme. Proc Natl Acad Sci U S A 2013; 111:E54-61. [PMID: 24367089 DOI: 10.1073/pnas.1308768111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
APIP, Apaf-1 interacting protein, has been known to inhibit two main types of programmed cell death, apoptosis and pyroptosis, and was recently found to be associated with cancers and inflammatory diseases. Distinct from its inhibitory role in cell death, APIP was also shown to act as a 5-methylthioribulose-1-phosphate dehydratase, or MtnB, in the methionine salvage pathway. Here we report the structural and enzymatic characterization of human APIP as an MtnB enzyme with a Km of 9.32 μM and a Vmax of 1.39 μmol min(-1) mg(-1). The crystal structure was determined at 2.0-Å resolution, revealing an overall fold similar to members of the zinc-dependent class II aldolase family. APIP/MtnB exists as a tetramer in solution and exhibits an assembly with C4 symmetry in the crystal lattice. The pocket-shaped active site is located at the end of a long cleft between two adjacent subunits. We propose an enzymatic reaction mechanism involving Glu139* as a catalytic acid/base, as supported by enzymatic assay, substrate-docking study, and sequence conservation analysis. We explored the relationship between two distinct functions of APIP/MtnB, cell death inhibition, and methionine salvage, by measuring the ability of enzymatic mutants to inhibit cell death, and determined that APIP/MtnB functions as a cell death inhibitor independently of its MtnB enzyme activity for apoptosis induced by either hypoxia or etoposide, but dependently for caspase-1-induced pyroptosis. Our results establish the structural and biochemical groundwork for future mechanistic studies of the role of APIP/MtnB in modulating cell death and inflammation and in the development of related diseases.
Collapse
|
25
|
Sparta M, Valdez CE, Alexandrova AN. Metal-Dependent Activity of Fe and Ni Acireductone Dioxygenases: How Two Electrons Reroute the Catalytic Pathway. J Mol Biol 2013; 425:3007-18. [DOI: 10.1016/j.jmb.2013.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/27/2013] [Accepted: 05/05/2013] [Indexed: 11/16/2022]
|
26
|
Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, van der Kwast T, Mizokami A, Morrissey C, Jarvi K, Diamandis EP. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol Cell Proteomics 2013; 12:1589-601. [PMID: 23443136 DOI: 10.1074/mcp.m112.023887] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the most common malignancy and the second leading cause of cancer-related deaths in men. One common treatment is androgen-deprivation therapy, which reduces symptoms in most patients. However, over time, patients develop tumors that are androgen-independent and ultimately fatal. The mechanisms that cause this transition remain largely unknown, and as a result, there are no effective treatments against androgen-independent prostate cancer. As a model platform, we used the LNCaP cell line and its androgen-independent derivative, LNCaP-SF. Utilizing stable isotope labeling with amino acids in cell culture coupled to mass spectrometry, we assessed the differential global protein expression of the two cell lines. Our proteomic analysis resulted in the quantification of 3355 proteins. Bioinformatic prioritization resulted in 42 up-regulated and 46 down-regulated proteins in LNCaP-SF cells relative to LNCaP cells. Our top candidate, HMGCS2, an enzyme involved in ketogenesis, was found to be 9-fold elevated in LNCaP-SF cells, based on peptide ratios. After analyzing the remaining enzymes of this pathway (ACAT1, BDH1, HMGCL, and OXCT1), we observed increased expression of these proteins in the LNCaP-SF cells, which was further verified using Western blotting. To determine whether these enzymes were up-regulated in clinical samples, we performed quantitative PCR and immunohistochemistry on human prostate cancer tissues, from which we observed significantly increased transcript and protein levels in high-grade cancer (Gleason grade ≥ 8). In addition, we observed significant elevation of these enzymes in the LuCaP 96AI castration-resistant xenograft. Further assessment of ACAT1 on human castration-resistant metastatic prostate cancer tissues revealed substantially elevated expression of ACAT1 in these specimens. Taken together, our results indicate that enzymes of the ketogenic pathway are up-regulated in high-grade prostate cancer and could serve as potential tissue biomarkers for the diagnosis or prognosis of high-grade disease.
Collapse
Affiliation(s)
- Punit Saraon
- Department of Pathology and Laboratory Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Linard B, Nguyen NH, Prosdocimi F, Poch O, Thompson JD. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data. Evol Bioinform Online 2011; 8:61-77. [PMID: 22267905 PMCID: PMC3256995 DOI: 10.4137/ebo.s8814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.
Collapse
Affiliation(s)
- Benjamin Linard
- Laboratoire De Bioinformatique Et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/UDS, Illkirch, France
| | - Ngoc Hoan Nguyen
- Laboratoire De Bioinformatique Et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/UDS, Illkirch, France
| | | | - Olivier Poch
- Laboratoire De Bioinformatique Et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/UDS, Illkirch, France
| | - Julie D. Thompson
- Laboratoire De Bioinformatique Et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/UDS, Illkirch, France
| |
Collapse
|
28
|
Friedman EJ, Wang HX, Jiang K, Perovic I, Deshpande A, Pochapsky TC, Temple BRS, Hicks SN, Harden TK, Jones AM. Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein beta subunit in Arabidopsis. J Biol Chem 2011; 286:30107-18. [PMID: 21712381 PMCID: PMC3191050 DOI: 10.1074/jbc.m111.227256] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/27/2011] [Indexed: 01/30/2023] Open
Abstract
Heterotrimeric G protein complexes are conserved from plants to mammals, but the complexity of each system varies. Arabidopsis thaliana contains one Gα, one Gβ (AGB1), and at least three Gγ subunits, allowing it to form three versions of the heterotrimer. This plant model is ideal for genetic studies because mammalian systems contain hundreds of unique heterotrimers. The activation of these complexes promotes interactions between both the Gα subunit and the Gβγ dimer with enzymes and scaffolds to propagate signaling to the cytoplasm. However, although effectors of Gα and Gβ are known in mammals, no Gβ effectors were previously known in plants. Toward identifying AGB1 effectors, we genetically screened for dominant mutations that suppress Gβ-null mutant (agb1-2) phenotypes. We found that overexpression of acireductone dioxygenase 1 (ARD1) suppresses the 2-day-old etiolated phenotype of agb1-2. ARD1 is homologous to prokaryotic and eukaryotic ARD proteins; one function of ARDs is to operate in the methionine salvage pathway. We show here that ARD1 is an active metalloenzyme, and AGB1 and ARD1 both control embryonic hypocotyl length by modulating cell division; they also may contribute to the production of ethylene, a product of the methionine salvage pathway. ARD1 physically interacts with AGB1, and ARD enzymatic activity is stimulated by AGB1 in vitro. The binding interface on AGB1 was deduced using a comparative evolutionary approach and tested using recombinant AGB1 mutants. A possible mechanism for AGB1 activation of ARD1 activity was tested using directed mutations in a loop near the substrate-binding site.
Collapse
Affiliation(s)
| | - Helen X. Wang
- From the Department of Biology
- SmileNature Corporation, San Diego, California 92129
| | | | | | - Aditi Deshpande
- Biochemistry, Brandeis University, Waltham, Massachusetts 02454, and
| | | | - Brenda R. S. Temple
- R. L. Juliano Structural Bioinformatics Core Facility
- Departments of Biochemistry and Biophysics and
| | | | - T. Kendall Harden
- Pharmacology, and
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
29
|
Harewood L, Liu M, Keeling J, Howatson A, Whiteford M, Branney P, Evans M, Fantes J, FitzPatrick DR. Bilateral renal agenesis/hypoplasia/dysplasia (BRAHD): postmortem analysis of 45 cases with breakpoint mapping of two de novo translocations. PLoS One 2010; 5:e12375. [PMID: 20811621 PMCID: PMC2928268 DOI: 10.1371/journal.pone.0012375] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bilateral renal agenesis/hypoplasia/dysplasia (BRAHD) is a relatively common, lethal malformation in humans. Established clinical risk factors include maternal insulin dependent diabetes mellitus and male sex of the fetus. In the majority of cases, no specific etiology can be established, although teratogenic, syndromal and single gene causes can be assigned to some cases. METHODOLOGY/PRINCIPAL FINDINGS 45 unrelated fetuses, stillbirths or infants with lethal BRAHD were ascertained through a single regional paediatric pathology service (male:female 34:11 or 3.1:1). The previously reported phenotypic overlaps with VACTERL, caudal dysgenesis, hemifacial microsomia and Müllerian defects were confirmed. A new finding is that 16/45 (35.6%; m:f 13:3 or 4.3:1) BRAHD cases had one or more extrarenal malformations indicative of a disoder of laterality determination including; incomplete lobulation of right lung (seven cases), malrotation of the gut (seven cases) and persistence of the left superior vena cava (five cases). One such case with multiple laterality defects and sirelomelia was found to have a de novo apparently balanced reciprocal translocation 46,XY,t(2;6)(p22.3;q12). Translocation breakpoint mapping was performed by interphase fluorescent in-situ hybridization (FISH) using nuclei extracted from archival tissue sections in both this case and an isolated bilateral renal agenesis case associated with a de novo 46,XY,t(1;2)(q41;p25.3). Both t(2;6) breakpoints mapped to gene-free regions with no strong evidence of cis-regulatory potential. Ten genes localized within 500 kb of the t(1;2) breakpoints. Wholemount in-situ expression analyses of the mouse orthologs of these genes in embryonic mouse kidneys showed strong expression of Esrrg, encoding a nuclear steroid hormone receptor. Immunohistochemical analysis showed that Esrrg was restricted to proximal ductal tissue within the embryonic kidney. CONCLUSIONS/SIGNIFICANCE The previously unreported association of BRAHD with laterality defects suggests that renal agenesis may share a common etiology with heterotaxy in some cases. Translocation breakpoint mapping identified ESRRG as a plausible candidate gene for BRAHD.
Collapse
Affiliation(s)
- Louise Harewood
- MRC Human Genetics Unit, Institute of Genetic and Molecular Medicine, Edinburgh, United Kingdom
| | - Monica Liu
- Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean Keeling
- Department of Paediatric Pathology, New Royal Infirmary, Edinburgh, United Kingdom
| | - Alan Howatson
- Department of Paediatric Pathology, Royal Hospital for Sick Children, Glasgow, United Kingdom
| | - Margo Whiteford
- Department of Clinical Genetics, Royal Hospital for Sick Children, Glasgow, United Kingdom
| | - Peter Branney
- MRC Human Genetics Unit, Institute of Genetic and Molecular Medicine, Edinburgh, United Kingdom
| | - Margaret Evans
- Department of Paediatric Pathology, New Royal Infirmary, Edinburgh, United Kingdom
| | - Judy Fantes
- MRC Human Genetics Unit, Institute of Genetic and Molecular Medicine, Edinburgh, United Kingdom
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetic and Molecular Medicine, Edinburgh, United Kingdom
- South-East Scotland Regional Genetics Services, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
30
|
The War on Cancer rages on. Neoplasia 2010; 11:1252-63. [PMID: 20019833 DOI: 10.1593/neo.91866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 02/08/2023] Open
Abstract
In 1971, the "War on Cancer" was launched by the US government to cure cancer by the 200-year anniversary of the founding of the United States of America, 1976. This article briefly looks back at the progress that has been made in cancer research and compares progress made in other areas of human affliction. While progress has indeed been made, the battle continues to rage on.
Collapse
|
31
|
Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â²-methylthioadenosine. IUBMB Life 2009; 61:1132-42. [DOI: 10.1002/iub.278] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Neoplasia: the second decade. Neoplasia 2009; 10:1314-24. [PMID: 19048110 DOI: 10.1593/neo.81372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022] Open
Abstract
This issue marks the end of the 10-year anniversary of Neoplasia where we have seen exciting growth in both number of submitted and published articles in Neoplasia. Neoplasia was first published in 1999. During the past 10 years, Neoplasia has dynamically adapted to the needs of the cancer research community as technologies have advanced. Neoplasia is currently providing access to articles through PubMed Central to continue to facilitate rapid broad-based dissemination of published findings to the scientific community through an Open Access model. This has in part helped Neoplasia to achieve an improved impact factor this past year, demonstrating that the manuscripts published by Neoplasia are of great interest to the overall cancer research community. This past year, Neoplasia received a record number of articles for review and has had a 21% increase in the number of published articles.
Collapse
|
33
|
Rudzka K, Arif AM, Berreau LM. A trinuclear nickel(II) enediolate complex: synthesis, characterization, and O2 reactivity. Inorg Chem 2008; 47:10832-40. [PMID: 18959363 PMCID: PMC2683038 DOI: 10.1021/ic800947z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Using a new N(4)-donor chelate ligand having a mixture of hydrophobic phenyl and hydrogen-bond-donor appendages, a trinuclear nickel(II) complex of the doubly deprotonated form of 2-hydroxy-1,3-diphenylpropane-1,3-dione was isolated, characterized (X-ray crystallography, elemental analysis, UV-vis, (1)H NMR, FTIR, and magnetic moment measurement), and evaluated for O(2) reactivity. This complex, [(6-NA-6-Ph(2)TPANi)(2)(mu-PhC(O)C(O)C(O)Ph)(2)Ni](ClO(4))(2) (4), has two terminal pseudooctahedral Ni(II) centers supported by the tetradentate chelate ligand and a central square-planar Ni(II) ion ligated by oxygen atoms of two bridging enediolate ligands. In CH(3)CN, 4 exhibits a deep orange/brown color and lambda(max) = 463 nm (epsilon = 16 000 M(-1)cm(-1)). The room temperature magnetic moment of 4, determined by Evans method, is mu(eff) = 5.3(2) mu(B). This is consistent with the presence of two noninteracting high-spin Ni(II) centers, a diamagnetic central Ni(II) ion, and an overall quintet ground state. Exposure of a CH(3)CN solution of 4 to O(2) results in the rapid loss of the orange/brown color to give a green solution. The products identified from this reaction are [(kappa(3)-6-NA-6-Ph(2)TPA)Ni(O(2)Ph)(H(2)O)]ClO(4) (5), benzil [PhC(O)C(O)Ph], and CO. Identification of 5 was achieved via its independent synthesis and a comparison of its (1)H NMR and mass spectral features with those of the 6-NA-6-Ph(2)TPA-containing product generated upon reaction of 4 with O(2). The independently prepared sample of 5 was characterized by X-ray crystallography, elemental analysis, UV-vis, mass spectrometry, and FTIR. The O(2) reactivity of 4 has relevance to the active-site chemistry of Ni(II)-containing acireductone dioxygenase (Ni(II)ARD).
Collapse
Affiliation(s)
- Katarzyna Rudzka
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300
| | - Atta M. Arif
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Lisa M. Berreau
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300
| |
Collapse
|
34
|
Expression of androgen receptor is negatively regulated by p53. Neoplasia 2008; 9:1152-9. [PMID: 18084622 DOI: 10.1593/neo.07769] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/15/2007] [Accepted: 10/15/2007] [Indexed: 12/11/2022] Open
Abstract
Increased expression of androgen receptor (AR) in prostate cancer (PC) is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs). We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.
Collapse
|
35
|
Neoplasia: An Anniversary of Progress. Neoplasia 2007. [DOI: 10.1593/neo.07968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|