1
|
Laga T, Van Rompuy AS, Busschaert P, Marquina G, Loverix L, Olbrecht S, Ottenbourgs T, Baert T, Van Gorp T, Vergote I, Lambrechts D, Van Nieuwenhuysen E. Single-cell profiling in ovarian germ cell and sex cord-stromal tumours. Br J Cancer 2025:10.1038/s41416-025-03012-6. [PMID: 40269311 DOI: 10.1038/s41416-025-03012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The tumour microenvironment of rare ovarian germ cell tumours (OGCT) and sex-cord stromal tumours (SCST) remains unexplored. To better understand their immune and stromal landscape, we constructed a blueprint using single-cell RNA sequencing (scRNA-seq). METHODS We performed scRNA-seq of 66, 919 cells from twelve fresh tumour samples: seven adult granulosa cell tumour (aGSCT), one juvenile GSCT (jGSCT), one Sertoli-Leydig (SL) tumour, two immature teratoma (IT) and one dysgerminoma (DG). We characterised immune cell subtypes and fibroblasts based on their specific marker genes. Validation included combined positive score (CPS) of 46 OGCTs and 66 SCSTs, and bulk RNA sequencing (n = 32). RESULTS Cell clustering and annotation revealed a immune-activated microenvironment in DG, driven by PD-1- exhausted T cells, reflected in high CPS (≥10) and upregulated immune pathways. IT samples displayed no immunoreactive profile, consistent with a negative CPS. aGSCTs exhibited a fibroblast-enriched, immune-desert phenotype, with low T cell infiltration and increased immunosuppressive LYVE1 and CX3CR1+ macrophages, corresponding to negative CPS. CONCLUSION We constructed a detailed blueprint of the OGCT and SCSTs microenvironment of, elucidating potential modulators that shape their immune landscape. The immune-suppressive environment in aGSCTs likely limits immunotherapy response, as immunosuppressive macrophages inhibit T cell expansion along with EMT activation and fibroblast predominance.
Collapse
Affiliation(s)
- T Laga
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium.
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium.
- VIB Centre for Cancer Biology, Lab of Translational Genetics, Leuven, Belgium.
| | - A S Van Rompuy
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium
| | - P Busschaert
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Lab of Translational Genetics, Leuven, Belgium
| | - G Marquina
- Department of Medical Oncology, San Carlos Hospital, Madrid, Spain
| | - L Loverix
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - S Olbrecht
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - T Ottenbourgs
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
| | - T Baert
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - T Van Gorp
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
| | - I Vergote
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
| | - D Lambrechts
- VIB Centre for Cancer Biology, Lab of Translational Genetics, Leuven, Belgium
| | - E Van Nieuwenhuysen
- Department of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Gynaecological Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Yu J, Guo Z, Wang L. Progress and Challenges of Immunotherapy Predictive Biomarkers for Triple Negative Breast Cancer in the Era of Single-Cell Multi-Omics. Life (Basel) 2023; 13:life13051189. [PMID: 37240834 DOI: 10.3390/life13051189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with a poor prognosis. Despite conventional treatments, including surgery, radiation, and chemotherapy, the overall response rate to PD-1/PD-L1 immune checkpoint inhibitors remains low, with limited predictive significance from current biomarkers such as PD-L1 expression, tumor-infiltrating lymphocytes (TILs), and tumor mutational burden (TMB). To address this challenge, recent advancements in single-cell sequencing techniques have enabled deeper exploration of the highly complex and heterogeneous TNBC tumor microenvironment at the single-cell level, revealing promising TNBC predictive biomarkers for immune checkpoint inhibitors. In this review, we discuss the background, motivation, methodology, results, findings, and conclusion of multi-omics analyses that have led to the identification of these emerging biomarkers. Our review suggests that single-cell multi-omics analysis holds great promise for the identification of more effective biomarkers and personalized treatment strategies for TNBC patients.
Collapse
Affiliation(s)
- Jiangnan Yu
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518054, China
| | - Zhikun Guo
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518054, China
| | - Lei Wang
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518054, China
| |
Collapse
|
3
|
Yang T, Zhang S, Yuan H, Wang Y, Cai L, Chen H, Wang X, Song D, Wang X, Guo Z, Wang X. Platinum-Based TREM2 Inhibitor Suppresses Tumors by Remodeling the Immunosuppressive Microenvironment. Angew Chem Int Ed Engl 2023; 62:e202213337. [PMID: 36259513 DOI: 10.1002/anie.202213337] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/07/2022]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a key pro-tumorigenic marker of tumor-infiltrating macrophages, showing potent immunosuppressive activity in tumor microenvironment. A platinum(IV) complex OPA derived from oxaliplatin (OP) and artesunate (ART) exhibited direct cytotoxicity against human colon cancer cells and immunomodulatory activity to inhibit TREM2 on macrophages in vitro and vivo. Furthermore, OPA deterred the tumor growth in mouse models bearing MC38 colorectal tumor by reducing the number of CD206+ and CX3 CR1+ immunosuppressive macrophages; it also promoted the expansion and infiltration of immunostimulatory dendritic, cytotoxic T, and natural killer cells. OPA is the first small-molecular TREM2 inhibitor capable of relieving immunosuppressive tumor microenvironment and enhancing chemical anticancer efficiency of a platinum drug, thus showing typical characteristics of a chemoimmunotherapeutic agent.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front Cell Dev Biol 2022; 9:740827. [PMID: 35004667 PMCID: PMC8733653 DOI: 10.3389/fcell.2021.740827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature myeloid cells, has a pivotal role in negatively regulating immune response, promoting tumor progression, creating pre-metastases niche, and weakening immunotherapy efficacy. The underlying mechanisms are complex and diverse, including immunosuppressive functions (such as inhibition of cytotoxic T cells and recruitment of regulatory T cells) and non-immunological functions (mediating stemness and promoting angiogenesis). Moreover, MDSC may predict therapeutic response as a poor prognosis biomarker among multiple tumors. Accumulating evidence indicates targeting MDSC can reverse immunosuppressive tumor microenvironment, and improve therapeutic response either single or combination with immunotherapy. This review summarizes the phenotype and definite mechanisms of MDSCs in tumor progression, and provide new insights of targeting strategies regarding to their clinical applications.
Collapse
Affiliation(s)
- Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yi-Xiao Yuan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China.,Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
5
|
Hopkins D, Sanchez H, Berwin B, Wilkinson-Ryan I. Cisplatin increases immune activity of monocytes and cytotoxic T-cells in a murine model of epithelial ovarian cancer. Transl Oncol 2021; 14:101217. [PMID: 34530192 PMCID: PMC8450249 DOI: 10.1016/j.tranon.2021.101217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/15/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is an immunologically active malignancy, but thus far immune therapy has had limited success in clinical trials. One barrier to implementation of efficacious immune therapies is a lack of knowledge of the effect of chemotherapy on the monocyte-derived component of the immune infiltrate within the tumor. We utilized the ID8 murine EOC model to investigate alterations within tumor ascites that occur following administration of platinum chemotherapy. Cisplatin treatment resulted in a significant increase in monocytes within the ascites of tumor bearing mice. We identified that CD11b+ cells from the ascites of mice that have been treated with cisplatin elicits an increase in IFN-ɣ expression from CD8+ T-cells compared to CD11b+ cells from a mouse treated with vehicle control (604.0 pg/mL v. 4328.0 pg/mL; p < .0001). Splenocytes derived from tumor bearing mice released increase levels of IFN-ɣ after treatment with cisplatin when incubated with dendritic cells (DCs) and tumor antigen (62.0 v. 92.1 pg/mL; p = .03). Cisplatin induced an increase in T-cell and monocyte/macrophage activation markers (CD62L and CD301). Levels of IL-10, IL-6, and VEGF in the cell free ascites of mice treated with cisplatin decreased (p > .05). These results indicate that treatment with cisplatin leads to an increase of anti-tumor activity within the ascites related to alterations in the ascites monocytes. Further investigation of these findings in humans is necessary to identify how these cells behave in different patient subgroups and if there is a role for monocyte directed therapy in conjunction with T-cell directed therapy and/or chemotherapy.
Collapse
Affiliation(s)
- Daniel Hopkins
- Department of Microbiology and Immunology, Dartmouth College, Lebanon NH, USA
| | - Hector Sanchez
- Department of Microbiology and Immunology, Dartmouth College, Lebanon NH, USA
| | - Brent Berwin
- Genomic Education, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Ivy Wilkinson-Ryan
- Department of Ob/Gyn Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, NH, USA.
| |
Collapse
|
6
|
Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, Boeckx B, Vanden Bempt M, Nevelsteen I, Lambein K, Punie K, Neven P, Garg AD, Wildiers H, Qian J, Smeets A, Lambrechts D. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med 2021; 27:820-832. [PMID: 33958794 DOI: 10.1038/s41591-021-01323-8] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Immune-checkpoint blockade (ICB) combined with neoadjuvant chemotherapy improves pathological complete response in breast cancer. To understand why only a subset of tumors respond to ICB, patients with hormone receptor-positive or triple-negative breast cancer were treated with anti-PD1 before surgery. Paired pre- versus on-treatment biopsies from treatment-naive patients receiving anti-PD1 (n = 29) or patients receiving neoadjuvant chemotherapy before anti-PD1 (n = 11) were subjected to single-cell transcriptome, T cell receptor and proteome profiling. One-third of tumors contained PD1-expressing T cells, which clonally expanded upon anti-PD1 treatment, irrespective of tumor subtype. Expansion mainly involved CD8+ T cells with pronounced expression of cytotoxic-activity (PRF1, GZMB), immune-cell homing (CXCL13) and exhaustion markers (HAVCR2, LAG3), and CD4+ T cells characterized by expression of T-helper-1 (IFNG) and follicular-helper (BCL6, CXCR5) markers. In pre-treatment biopsies, the relative frequency of immunoregulatory dendritic cells (PD-L1+), specific macrophage phenotypes (CCR2+ or MMP9+) and cancer cells exhibiting major histocompatibility complex class I/II expression correlated positively with T cell expansion. Conversely, undifferentiated pre-effector/memory T cells (TCF7+, GZMK+) or inhibitory macrophages (CX3CR1+, C3+) were inversely correlated with T cell expansion. Collectively, our data identify various immunophenotypes and associated gene sets that are positively or negatively correlated with T cell expansion following anti-PD1 treatment. We shed light on the heterogeneity in treatment response to anti-PD1 in breast cancer.
Collapse
Affiliation(s)
- Ayse Bassez
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Hanne Vos
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Laurien Van Dyck
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging & Pathology, Laboratory of Translational Cell & Tissue Research and Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | | | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kathleen Lambein
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Cancer Biology, Leuven, Belgium.
| |
Collapse
|
7
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol 2020; 10:200111. [PMID: 32931721 PMCID: PMC7536076 DOI: 10.1098/rsob.200111] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic immune activation and inflammation are unwanted consequences of many pathological conditions, since they could lead to tissue damage and immune exhaustion, both of which can worsen the pathological condition status. In fact, the immune system is naturally equipped with immunoregulatory cells that can limit immune activation and inflammation. However, chronic activation of downregulatory immune responses is also associated with unwanted consequences that, in turn, could lead to disease progression as seen in the case of cancer and chronic infections. Myeloid-derived suppressor cells (MDSCs) are now considered to play a pivotal role in the pathogenesis of different inflammatory pathological conditions, including different types of cancer and chronic infections. As a potent immunosuppressor cell population, MDSCs can inhibit specific and non-specific immune responses via different mechanisms that, in turn, lead to disease persistence. One such mechanism by which MDSCs can activate their immunosuppressive effects is accomplished by secreting copious amounts of immunosuppressant molecules such as interleukin-10 (IL-10). In this article, we will focus on the pathological role of MDSC expansion in chronic inflammatory conditions including cancer, sepsis/infection, autoimmunity, asthma and ageing, as well as some of the mechanisms by which MDSCs/IL-10 contribute to the disease progression in such conditions.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
8
|
Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, Wauters E, Pomella V, Verbandt S, Busschaert P, Bassez A, Franken A, Bempt MV, Xiong J, Weynand B, van Herck Y, Antoranz A, Bosisio FM, Thienpont B, Floris G, Vergote I, Smeets A, Tejpar S, Lambrechts D. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res 2020; 30:745-762. [PMID: 32561858 PMCID: PMC7608385 DOI: 10.1038/s41422-020-0355-0] [Citation(s) in RCA: 452] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (n = 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while tumor-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumors treated with checkpoint immunotherapy and identifying a naïve CD4+ T-cell phenotype predictive of response to checkpoint immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data. In conclusion, by providing a comprehensive blueprint through an interactive web server, we generate the first panoramic view on the shared complexity of stromal cells in different cancers.
Collapse
Affiliation(s)
- Junbin Qian
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Siel Olbrecht
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Bram Boeckx
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hanne Vos
- Department of Oncology, KU Leuven, Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Emre Etlioglu
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Els Wauters
- Respiratory Oncology Unit (Pneumology) and Leuven Lung Cancer Group, University Hospital KU Leuven, Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Valentina Pomella
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Verbandt
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Pieter Busschaert
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Ayse Bassez
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Amelie Franken
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marlies Vanden Bempt
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jieyi Xiong
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | | | - Asier Antoranz
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | - Francesca Maria Bosisio
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Oncology, KU Leuven, Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium. .,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020; 9:cells9030561. [PMID: 32121014 PMCID: PMC7140518 DOI: 10.3390/cells9030561] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.
Collapse
Affiliation(s)
- Andrew M. K. Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - Fatima Valdes-Mora
- Histone Variants Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| |
Collapse
|
10
|
Wilkinson-Ryan I, Pham MM, Sergent P, Tafe LJ, Berwin BL. A Syngeneic Mouse Model of Epithelial Ovarian Cancer Port Site Metastases. Transl Oncol 2018; 12:62-68. [PMID: 30268949 PMCID: PMC6170253 DOI: 10.1016/j.tranon.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a deadly gynecologic malignancy, but animal models for the study of EOC pathophysiology and drug efficacy are limited. Based on the finding that women with EOC are at risk for metastasis at a trocar site after laparoscopy, we developed a syngeneic murine model of port-site metastasis of EOC. We leveraged the ID8 murine EOC cell line to induce intra-peritoneal tumors in mice. Once durable intraperitoneal tumor was confirmed with bioluminescence imaging, intra-abdominal wall tumors were induced by abdominal wall puncture with a hollow bore needle. This resulted in a robust system in which C57BL/6 mice developed metastatic deposits at a rate of 66.7% ± 10.77; no intra-abdominal wall metastases were seen in control samples (P = .0003, CI 41.16–90.84). Immunodeficient NOD SCID gamma mice developed puncture site metastases in 70% ± 10.0 of mice and also had no metastases documented in control sites (P = .002, CI 42.24–97.76). In addition we were able to demonstrate the presence of immune infiltrates within the metastatic deposits of C57BL/6 mice via IHC. Therefore, in this study we demonstrate the predictable development of invasive abdominal wall metastases in a syngeneic mouse model of EOC. This model enables studies of the metastatic process and provides a novel system in which to test the effect of therapies on a clinically-relevant model in an immune competent mouse.
Collapse
Affiliation(s)
- Ivy Wilkinson-Ryan
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Melissa M Pham
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Petra Sergent
- Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Laura J Tafe
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Brent L Berwin
- Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
11
|
Tcyganov E, Mastio J, Chen E, Gabrilovich DI. Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 2018; 51:76-82. [PMID: 29547768 DOI: 10.1016/j.coi.2018.03.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
In recent years, myeloid-derived suppressor cells (MDSC) have emerged as one of the major inhibitors of immune effector cell function in cancer. MDSC represent a heterogeneous population of largely immature myeloid cells that are characterized by a pathological state of activation and display potent immune suppressive activity. Two major subsets of MDSC have been identified: monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC). PMN-MSDC share phenotypic and morphologic features with neutrophils, whereas M-MDSC are similar to monocytes and are characterized by high plasticity. Differentiation of M-MDSC to macrophages and dendritic cells is shaped by tumor microenvironment. In recent years, the mechanisms of this process start to emerge.
Collapse
Affiliation(s)
| | - Jerome Mastio
- The Wistar Institute, Philadelphia, PA 19104, United States
| | - Eric Chen
- University of Pennsylvania, Philadelphia, PA, United States
| | - Dmitry I Gabrilovich
- The Wistar Institute, Philadelphia, PA 19104, United States; University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Yhim HY, Kim JA, Ko SH, Park Y, Yim E, Kim HS, Kwak JY. The prognostic significance of CD11b +CX3CR1 + monocytes in patients with newly diagnosed diffuse large B-cell lymphoma. Oncotarget 2017; 8:92289-92299. [PMID: 29190915 PMCID: PMC5696181 DOI: 10.18632/oncotarget.21241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Despite their critical roles in angiogenesis and host immunosuppression within the tumor microenvironment, the prognostic significance of myeloid-lineage cells expressing CD11b and CX3CR1 in diffuse large B-cell lymphoma (DLBCL) has not been well studied. We prospectively enrolled newly-diagnosed DLBCL patients at two Korean institutions between May 2011 and Aug 2015. CD11b+CX3CR1+ cells were analyzed by flow cytometry using peripheral blood (PB) and bone marrow (BM) aspirate samples before treatments. Eighty-nine patients (52 males) were enrolled. The median age was 65 years (range, 19–88 years). Thirty-seven patients (42%) were classified as high-intermediate or high risk according to the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI). Patients were categorized into either high or low PB-/BM-CD11b+CX3CR1+ monocyte group according to the cutoffs identified by the receiver-operating-characteristics analysis (PB, 3.68%; BM, 3.45%). The high PB-CD11b+CX3CR1+ monocyte group was significantly associated with high-intermediate and high risk NCCN-IPI group (P = 0.004). With a median follow-up of 27.7 months (range, 1.7-60.4 months), the low PB-CD11b+CX3CR1+ monocyte group showed significantly better overall survival (OS) than the high PB-CD11b+CX3CR1+ monocyte group (3-year, 92.3% vs. 51.2%, respectively; P < 0.001). In contrast, no significant difference was observed between the high and low BM-CD11b+CX3CR1+ monocyte groups. Among patients with high-intermediate to high risk NCCN-IPI, the high PB-CD11b+CX3CR1+ monocyte group showed significantly worse OS than the low PB-CD11b+CX3CR1+ monocyte group (3-year, 29.3% vs. 80.2%, respectively; P = 0.008). Taken together, PB-CD11b+CX3CR1+ monocyte percentage correlates with the NCCN-IPI risk stratification, which enables identification of subgroups with extremely poor clinical outcomes.
Collapse
Affiliation(s)
- Ho-Young Yhim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jeong-A Kim
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hye Ko
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youngrok Park
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA
| | - Eunjung Yim
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Sun Kim
- College of Nursing, Chonbuk National University, Jeonju, Republic of Korea
| | - Jae-Yong Kwak
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
13
|
Bonelli S, Geeraerts X, Bolli E, Keirsse J, Kiss M, Pombo Antunes AR, Van Damme H, De Vlaminck K, Movahedi K, Laoui D, Raes G, Van Ginderachter JA. Beyond the M-CSF receptor - novel therapeutic targets in tumor-associated macrophages. FEBS J 2017; 285:777-787. [PMID: 28834216 DOI: 10.1111/febs.14202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/27/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) are by now established as important regulators of tumor progression by impacting on tumor immunity, angiogenesis, and metastasis. Hence, a multitude of approaches are currently pursued to intervene with TAM's protumor activities, the most advanced of which being a blockade of macrophage-colony stimulating factor (M-CSF)/M-CSF receptor (M-CSFR) signaling. M-CSFR signaling largely impacts on the differentiation of macrophages, including TAM, and hence strongly influences the numbers of these cells in tumors. However, a repolarization of TAM toward a more antitumor phenotype may be more elegant and may yield stronger effects on tumor growth. In this respect, several aspects of TAM behavior could be altered, such as their intratumoral localization, metabolism and regulatory pathways. Intervention strategies could include the use of small molecules but also new generations of biologicals which may complement the current success of immune checkpoint blockers. This review highlights current work on the search for new therapeutic targets in TAM.
Collapse
Affiliation(s)
- Stefano Bonelli
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Xenia Geeraerts
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Evangelia Bolli
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jiri Keirsse
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mate Kiss
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ana Rita Pombo Antunes
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Helena Van Damme
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Karen De Vlaminck
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kiavash Movahedi
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
14
|
O'Connor MA, Rastad JL, Green WR. The Role of Myeloid-Derived Suppressor Cells in Viral Infection. Viral Immunol 2017; 30:82-97. [PMID: 28051364 DOI: 10.1089/vim.2016.0125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that are well described as potent immune regulatory cells during human cancer and murine tumor models. Reports of MDSCs during viral infections remain limited, and their association with immunomodulation of viral diseases is still being defined. Here, we provide an overview of MDSCs or MDSC-like cells identified during viral infections, including murine viral models and human viral diseases. Understanding the similarities and/or differences of virally induced versus tumor-derived MDSCs will be important for designing future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Megan A O'Connor
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Jessica L Rastad
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - William R Green
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire.,2 Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth, Lebanon , New Hampshire
| |
Collapse
|
15
|
Movahedi K, Van Ginderachter JA. The Ontogeny and Microenvironmental Regulation of Tumor-Associated Macrophages. Antioxid Redox Signal 2016; 25:775-791. [PMID: 27020982 DOI: 10.1089/ars.2016.6704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
SIGNIFICANCE Tumor progression is supported by non-cancerous stromal cells, of which tumor-associated macrophages (TAMs) are prominent constituents. These cells could be considered promising therapeutic targets, but this requires a better understanding of their heterogeneity under the influence of tumor microenvironmental cues and/or ontogenic differences. Recent Advances: The availability of oxygen is an important regulator of the TAM phenotype, as well as of its access to myelopoietic growth factors. Very recent evidence also demonstrated that macrophages can be derived from embryonal precursors or from monocytes post-birth, introducing yet another level of heterogeneity among macrophages. CRITICAL ISSUES The relative contribution of ontogenically distinct macrophages to tumor characteristics is, to a large extent, still an open question. In addition, further knowledge on the role of tumor microenvirontal cues that shape TAMs is warranted. FUTURE DIRECTIONS More detailed insights into the TAM-regulating factors will provide new opportunities for therapeutic intervention. Interference with the phenotypes of TAM, which are known to be immunosuppressive and to contribute to dysfunctional tumor blood vessels, is anticipated to be beneficial in combination with chemotherapy and/or immunotherapy. Antioxid. Redox Signal. 25, 775-791.
Collapse
Affiliation(s)
- Kiavash Movahedi
- 1 Myeloid Cell Immunology Lab, VIB Inflammation Research Center , Ghent, Belgium .,2 Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Jo A Van Ginderachter
- 1 Myeloid Cell Immunology Lab, VIB Inflammation Research Center , Ghent, Belgium .,2 Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels, Belgium
| |
Collapse
|
16
|
Chiu DKC, Xu IMJ, Lai RKH, Tse APW, Wei LL, Koh HY, Li LL, Lee D, Lo RCL, Wong CM, Ng IOL, Wong CCL. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 2016; 64:797-813. [PMID: 27228567 DOI: 10.1002/hep.28655] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/02/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED A population of stromal cells, myeloid-derived suppressor cells (MDSCs), is present in tumors. Though studies have gradually revealed the protumorigenic functions of MDSCs, the molecular mechanisms guiding MDSC recruitment remain largely elusive. Hypoxia, O2 deprivation, is an important factor in the tumor microenvironment of solid cancers, whose growth often exceeds the growth of functional blood vessels. Here, using hepatocellular carcinoma as the cancer model, we show that hypoxia is an important driver of MDSC recruitment. We observed that MDSCs preferentially infiltrate into hypoxic regions in human hepatocellular carcinoma tissues and that hypoxia-induced MDSC infiltration is dependent on hypoxia-inducible factors. We further found that hypoxia-inducible factors activate the transcription of chemokine (C-C motif) ligand 26 in cancer cells to recruit chemokine (C-X3-C motif) receptor 1-expressing MDSCs to the primary tumor. Knockdown of chemokine (C-C motif) ligand 26 in cancer cells profoundly reduces MDSC recruitment, angiogenesis, and tumor growth. Therapeutically, blockade of chemokine (C-C motif) ligand 26 production in cancer cells by the hypoxia-inducible factor inhibitor digoxin or blockade of chemokine (C-X3-C motif) receptor 1 in MDSCs by chemokine (C-X3-C motif) receptor 1 neutralizing antibody could substantially suppress MDSC recruitment and tumor growth. CONCLUSION This study unprecedentedly reveals a novel molecular mechanism by which cancer cells direct MDSC homing to primary tumor and suggests that targeting MDSC recruitment represents an attractive therapeutic approach against solid cancers. (Hepatology 2016;64:797-813).
Collapse
Affiliation(s)
| | | | | | - Aki Pui-Wah Tse
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Larry Lai Wei
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Hui-Yu Koh
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Lynna Lan Li
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Derek Lee
- Department of Pathology, The University of Hong Kong, Hong Kong
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Chun-Ming Wong
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Szajnik M, Czystowska-Kuźmicz M, Elishaev E, Whiteside TL. Biological markers of prognosis, response to therapy and outcome in ovarian carcinoma. Expert Rev Mol Diagn 2016; 16:811-26. [PMID: 27268121 DOI: 10.1080/14737159.2016.1194758] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ovarian cancer (OvCa) is among the most common types of cancer and is the leading cause of death from gynecological malignancies in western countries. Cancer biomarkers have a potential for improving the management of OvCa patients at every point from screening and detection, diagnosis, prognosis, follow up, response to therapy and outcome. AREAS COVERED The literature search has indicated a number of candidate biomarkers have recently emerged that could facilitate the molecular definition of OvCa, providing information about prognosis and predicting response to therapy. These potentially promising biomarkers include immune cells and their products, tumor-derived exosomes, nucleic acids and epigenetic biomarkers. Expert commentary: Although most of the biomarkers available today require prospective validation, the development of noninvasive liquid biopsy-based monitoring promises to improve their utility for evaluations of prognosis, response to therapy and outcome in OvCa.
Collapse
Affiliation(s)
- Marta Szajnik
- a Department of Gynecology and Gynecologic Oncology , Military Institute of Medicine , Warsaw , Poland.,b Department of Immunology, Centre of Biostructure Research , Medical University of Warsaw , Warsaw , Poland
| | | | - Esther Elishaev
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA
| | - Theresa L Whiteside
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA.,d University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| |
Collapse
|
18
|
Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015; 6:12. [PMID: 25688243 PMCID: PMC4311683 DOI: 10.3389/fimmu.2015.00012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.
Collapse
Affiliation(s)
- Maria Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Mercedes Llorente
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Jose A. Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| |
Collapse
|
19
|
Lizotte PH, Baird JR, Stevens CA, Lauer P, Green WR, Brockstedt DG, Fiering SN. Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Oncoimmunology 2014; 3:e28926. [PMID: 25083323 PMCID: PMC4106169 DOI: 10.4161/onci.28926] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022] Open
Abstract
A principal mechanism by which tumors evade immune-mediated elimination is through immunosuppression. Previous approaches to tumor immunotherapy have focused on modifying the immunosuppressive environment with immune checkpoint inhibitors, cytokine therapy, and other modalities with the intent to generate T-cell based anti-tumor immunity. We hypothesized that transformation of the suppressive ovarian cancer microenvironment could be achieved by introduction of the attenuated ΔactA/ΔinlB strain of Listeria monocytogenes. ΔactA/ΔinlB introduced into the microenvironment of the aggressive ID8-Defb29/Vegf-A murine ovarian carcinoma is preferentially phagocytosed by tumor-associated macrophages (TAMs) and reprograms that population from one of suppression to immunostimulation. TAMs in the peritoneum upregulated their co-stimulatory molecules CD80 and CD86, increased transcription of inflammatory cytokines, and downregulated transcription of suppressive effector molecules. Surprisingly, therapeutic benefit was not mediated by T- or NK-cell activity. ΔactA/ΔinlB-induced repolarization of TAMs activated direct tumor cell lysis via Nos2 production of nitric oxide. Modulation of the immunosuppressive nature of the ID8-Defb29/Vegf-A microenvironment, specifically by reprogramming of the TAM suppressive population from M2 to M1 polarization, is critical for our observed immune-mediated survival benefit.
Collapse
Affiliation(s)
- Patrick H Lizotte
- Department of Microbiology and Immunology; The Geisel School of Medicine at Dartmouth; Lebanon, NH USA
| | - Jason R Baird
- Department of Microbiology and Immunology; The Geisel School of Medicine at Dartmouth; Lebanon, NH USA
| | - Cynthia A Stevens
- Department of Microbiology and Immunology; The Geisel School of Medicine at Dartmouth; Lebanon, NH USA
| | | | - William R Green
- Department of Microbiology and Immunology; The Geisel School of Medicine at Dartmouth; Lebanon, NH USA ; Norris Cotton Cancer Center; Lebanon, NH USA
| | | | - Steven N Fiering
- Department of Microbiology and Immunology; The Geisel School of Medicine at Dartmouth; Lebanon, NH USA ; Norris Cotton Cancer Center; Lebanon, NH USA
| |
Collapse
|
20
|
Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm 2014; 2014:480941. [PMID: 24799766 PMCID: PMC3985314 DOI: 10.1155/2014/480941] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
Fractalkine/CX3CL1, the only member of the CX3C chemokine family, exists as a membrane-anchored molecule as well as in soluble form, each mediating different biological activities. It is constitutively expressed in many hematopoietic and nonhematopoietic tissues such as endothelial and epithelial cells, lymphocytes, neurons, microglial osteoblasts. The biological activities of CX3CL1 are mediated by CX3CR1, that is expressed on different cell types such as NK cells, CD14+ monocytes, cytotoxic effector T cells, B cells, neurons, microglia, smooth muscle cells, and tumor cells. The CX3CL1/CX3CR1 axis is involved in the pathogenesis of several inflammatory cancer including various B cell malignancies. In tumors the interaction between cancer cells and cellular microenvironment creates a context that may promote tumor growth, increase tumor survival, and facilitate metastasis. Therefore the role of the CX3CL1/CX3CR1 has attracted interest as to the development of potential therapeutic approaches. Here we review the different effects of the CX3CL1/CX3CR1 axis in several inflammatory and neurodegenerative diseases and in cancer, with emphasis on human B cell lymphomas.
Collapse
|
21
|
Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol 2014; 5:127. [PMID: 24723924 PMCID: PMC3972476 DOI: 10.3389/fimmu.2014.00127] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022] Open
Abstract
Macrophages are extremely versatile cells that adopt a distinct phenotype in response to a changing microenvironment. Consequently, macrophages are involved in diverse functions, ranging from organogenesis and tissue homeostasis to recognition and destruction of invading pathogens. In cancer, tumor-associated macrophages (TAM) often contribute to tumor progression by increasing cancer cell migration and invasiveness, stimulating angiogenesis, and suppressing anti-tumor immunity. Accumulating evidence suggests that these different functions could be exerted by specialized TAM subpopulations. Here, we discuss the potential underlying mechanisms regulating TAM specialization and elaborate on TAM heterogeneity in terms of their ontogeny, activation state, and intra-tumoral localization. In addition, parallels are drawn between TAM and macrophages in other tissues. Together, a better understanding of TAM diversity could provide a rationale for novel strategies aimed at targeting the most potent tumor-supporting macrophages.
Collapse
Affiliation(s)
- Eva Van Overmeire
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium
| | - Adelaida Sarukhan
- Myeloid Cell Immunology Laboratory, VIB , Brussels , Belgium ; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel , Brussels , Belgium ; Institut national de la santé et de la recherche médicale , Paris , France
| |
Collapse
|
22
|
CX3CR1 delineates temporally and functionally distinct subsets of myeloid-derived suppressor cells in a mouse model of ovarian cancer. Immunol Cell Biol 2014; 92:499-508. [PMID: 24613975 PMCID: PMC4211619 DOI: 10.1038/icb.2014.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/09/2014] [Accepted: 02/11/2014] [Indexed: 01/12/2023]
Abstract
Expression of the chemokine receptor CX3CR1 has been used to identify distinct populations within the monocyte, macrophage and dendritic cell lineages. Recent evidence indicates that CX3CR1-positive subsets of myeloid cells play distinct and important roles in a wide range of immunological maladies and thus the use of CX3CR1 expression has leveraged our understanding of the myeloid contribution to a multitude of diseases. Here we use CX3CR1 expression as a means to identify a novel non-granulocytic CX3CR1-negative myeloid population that is functionally distinct from the previously-described CX3CR1-positive cellular subsets within the CD11b-positive cellular compartment of ascites from ovarian tumor-bearing mice. We functionally identify CX3CR1-negative cells as myeloid suppressor cells and as a cellular subset with pathological specificity. Importantly, the CX3CR1-negative cells exhibit early IL-10 production in the ovarian tumor microenvironment, which we have shown to be critically tied to suppression and further MDSC accumulation, and we now show that this cellular population actively contributes to tumor progression. Furthermore, we demonstrate that the CX3CR1-negative population is derived from the recently described CX3CR1-positive macrophage/dendritic cell precursor (MDP) cell. These studies provide a greater understanding of the generation and maintenance of regulatory myeloid subsets and have broad implications for the elucidation of myeloid function and contributions within the tumor microenvironment.
Collapse
|
23
|
Chemokine receptors in epithelial ovarian cancer. Int J Mol Sci 2013; 15:361-76. [PMID: 24384839 PMCID: PMC3907814 DOI: 10.3390/ijms15010361] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 01/03/2023] Open
Abstract
Ovarian carcinoma is the deadliest gynecologic malignancy with very poor rate of survival, and it is characterized by the presence of vast incurable peritoneal metastasis. Studies of the role of chemokine receptors, a family of proteins belonging to the group of G protein-coupled receptors, in ovarian carcinoma strongly placed this family of membrane receptors as major regulators of progression of this malignancy. In this review, we will discuss the roles that chemokine-receptor interactions play to support angiogenesis, cell proliferation, migration, adhesion, invasion, metastasis, and immune evasion in progression of ovarian carcinoma. Data regarding the role that the chemokine receptors play in the disease progression accumulated insofar strongly suggest that this family of proteins could be good therapeutic targets against ovarian carcinoma.
Collapse
|
24
|
Cavnar MJ, Zeng S, Kim TS, Sorenson EC, Ocuin LM, Balachandran VP, Seifert AM, Greer JB, Popow R, Crawley MH, Cohen NA, Green BL, Rossi F, Besmer P, Antonescu CR, DeMatteo RP. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. ACTA ACUST UNITED AC 2013; 210:2873-86. [PMID: 24323358 PMCID: PMC3865475 DOI: 10.1084/jem.20130875] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Imatinib reduces tumor cell KIT signaling and causes tumor cell apoptosis, which drives TAMs to shift from M1- to M2-like in mouse and human GIST. Tumor-associated macrophages (TAMs) are a major component of the cancer microenvironment. Modulation of TAMs is under intense investigation because they are thought to be nearly always of the M2 subtype, which supports tumor growth. Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and typically results from an activating mutation in the KIT oncogene. Using a spontaneous mouse model of GIST and 57 freshly procured human GISTs, we discovered that TAMs displayed an M1-like phenotype and function at baseline. In both mice and humans, the KIT oncoprotein inhibitor imatinib polarized TAMs to become M2-like, a process which involved TAM interaction with apoptotic tumor cells leading to the induction of CCAAT/enhancer binding protein (C/EBP) transcription factors. In human GISTs that eventually developed resistance to imatinib, TAMs reverted to an M1-like phenotype and had a similar gene expression profile as TAMs from untreated human GISTs. Therefore, TAM polarization depends on tumor cell oncogene activity and has important implications for immunotherapeutic strategies in human cancers.
Collapse
Affiliation(s)
- Michael J Cavnar
- Department of Surgery, 2 Department of Developmental Biology, and 3 Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schouppe E, De Baetselier P, Van Ginderachter JA, Sarukhan A. Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncoimmunology 2012; 1:1135-1145. [PMID: 23170260 PMCID: PMC3494626 DOI: 10.4161/onci.21566] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The versatility and plasticity of myeloid cell polarization/differentiation has turned out to be crucial in health and disease, and has become the subject of intense investigation during the last years. On one hand, myeloid cells provide a critical contribution to tissue homeostasis and repair. On the other hand, myeloid cells not only play an important role as first line defense against pathogens but also they are involved in a broad array of inflammation-related diseases such as cancer. Recent studies show that macrophages can exist in different activation states within the same tumor, underlining their plasticity and heterogeneity. In this review, we will discuss recent evidence on how the tumor microenvironment, as it evolves, shapes the recruitment, function, polarization and differentiation of the myeloid cell compartment, leading to the selection of myeloid cells with immunosuppressive and angiogenic functions that facilitate tumor progression and dissemination.
Collapse
Affiliation(s)
- Elio Schouppe
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
| | - Patrick De Baetselier
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
| | - Adelaida Sarukhan
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
- INSERM; Paris, France
| |
Collapse
|
26
|
Spear P, Barber A, Rynda-Apple A, Sentman CL. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF. THE JOURNAL OF IMMUNOLOGY 2012; 188:6389-98. [PMID: 22586039 DOI: 10.4049/jimmunol.1103019] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The infiltration of suppressive myeloid cells into the tumor microenvironment restrains anti-tumor immunity. However, cytokines may alter the function of myeloid lineage cells to support tumor rejection, regulating the balance between pro- and anti-tumor immunity. In this study, it is shown that effector cytokines secreted by adoptively transferred T cells expressing a chimeric Ag receptor (CAR) shape the function of myeloid cells to promote endogenous immunity and tumor destruction. Mice bearing the ovarian ID8 tumor were treated with T cells transduced with a chimeric NKG2D receptor. GM-CSF secreted by the adoptively transferred T cells recruited peripheral F4/80(lo)Ly-6C(+) myeloid cells to the tumor microenvironment in a CCR2-dependent fashion. T cell IFN-γ and GM-CSF activated local, tumor-associated macrophages, decreased expression of regulatory factors, increased IL-12p40 production, and augmented Ag processing and presentation by host macrophages to Ag-specific T cells. In addition, T cell-derived IFN-γ, but not GM-CSF, induced the production of NO by F4/80(hi) macrophages and enhanced their lysis of tumor cells. The ability of CAR T cell therapy to eliminate tumor was moderately impaired when inducible NO synthase was inhibited and greatly impaired in the absence of peritoneal macrophages after depletion with clodronate encapsulated liposomes. This study demonstrates that the activation of host macrophages by CAR T cell-derived cytokines transformed the tumor microenvironment from immunosuppressive to immunostimulatory and contributed to inhibition of ovarian tumor growth.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
27
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|
28
|
Kim M, Rooper L, Xie J, Kajdacsy-Balla AA, Barbolina MV. Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells. Mol Cancer Res 2011; 10:11-24. [PMID: 22064656 DOI: 10.1158/1541-7786.mcr-11-0256] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial ovarian carcinoma (EOC) is a deadly disease, and little is known about the mechanisms underlying its metastatic progression. Using human specimens and established cell lines, we determined that the G-protein-coupled seven-transmembrane fractalkine receptor (CX(3)CR1) is expressed in primary and metastatic ovarian carcinoma cells. Ovarian carcinoma cells robustly migrated toward CX(3)CL1, a specific ligand of CX(3)CR1, in a CX(3)CR1-dependent manner. Silencing of CX(3)CR1 reduced migration toward human ovarian carcinoma ascites fluid by approximately 70%. Importantly, adhesion of ovarian carcinoma cells to human peritoneal mesothelial cells was dependent on CX(3)CL1/CX(3)CR1 signaling. In addition, CX(3)CL1 was able to induce cellular proliferation. Together, our data suggest that the fractalkine network may function as a major contributor to the progression of EOC, and further attention to its role in the metastasis of this deadly malignancy is warranted.
Collapse
Affiliation(s)
- Mijung Kim
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
29
|
Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011; 29:1005-10. [PMID: 21983520 PMCID: PMC3212614 DOI: 10.1038/nbt.1989] [Citation(s) in RCA: 664] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022]
Abstract
Inflammatory monocytes -- but not the non-inflammatory subset -- depend on the chemokine receptor CCR2 for distribution to injured tissue and stimulate disease progression. Precise therapeutic targeting of this inflammatory monocyte subset could spare innate immunity's essential functions for maintenance of homeostasis and thus limit unwanted effects. Here we developed siRNA nanoparticles targeting CCR2 expression in inflammatory monocytes. We identified an optimized lipid nanoparticle and silencing siRNA sequence that when administered systemically, had rapid blood clearance, accumulated in spleen and bone marrow and showed high cellular localization of fluorescently tagged siRNA inside monocytes. Efficient degradation of CCR2 mRNA in monocytes prevented their accumulation in sites of inflammation. Specifically, the treatment attenuated their number in atherosclerotic plaques, reduced infarct size following coronary artery occlusion, prolonged normoglycemia in diabetic mice after pancreatic islet transplantation and resulted in reduced tumor volumes and lower numbers of tumor-associated macrophages. Taken together, siRNA nanoparticle-mediated CCR2 gene silencing in leukocytes selectively modulates functions of innate immune cell subtypes and may allow for the development of specific anti-inflammatory therapy.
Collapse
Affiliation(s)
- Florian Leuschner
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hart KM, Byrne KT, Molloy MJ, Usherwood EM, Berwin B. IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer. Front Immunol 2011; 2:29. [PMID: 22566819 PMCID: PMC3342001 DOI: 10.3389/fimmu.2011.00029] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022] Open
Abstract
Elevated levels of IL-10 in the microenvironment of human ovarian cancer and murine models of ovarian cancer are well established and correlate with poor clinical prognosis. However, amongst a myriad of immunosuppressive factors, the actual contribution of IL-10 to the ovarian tumor microenvironment, the mechanisms by which it acts, and its possible functional redundancy are unknown. We previously demonstrated that elimination of the myeloid-derived suppressor cell (MDSC) compartment within the ovarian tumor ascites inhibited tumor progression and, intriguingly, significantly decreased local IL-10 levels. Here we identify a novel pathway in which the tumor-infiltrating MDSC are the predominant producers of IL-10 and, importantly, require it to develop their immunosuppressive function in vivo. Importantly, we demonstrate that the role of IL-10 is critical, and not redundant with other immunosuppressive molecules, to in vivo tumor progression: blockade of the IL-10 signaling network results in alleviation of MDSC-mediated immunosuppression, altered T cell phenotype and activity, and improved survival. These studies define IL-10 as a fundamental modulator of both MDSC and T cells within the ovarian tumor microenvironment. Importantly, IL-10 signaling is shown to be necessary to the development and maintenance of a permissive tumor microenvironment and represents a viable target for anti-tumor strategies.
Collapse
Affiliation(s)
- Kevin M Hart
- Berwin Laboratory, Department of Microbiology and Immunology, Dartmouth Medical Center Lebanon, NH, USA
| | | | | | | | | |
Collapse
|
31
|
Ovarian tumor-induced T cell suppression is alleviated by vascular leukocyte depletion. Transl Oncol 2011; 2:291-9. [PMID: 19956391 DOI: 10.1593/tlo.09190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 07/16/2009] [Accepted: 07/27/2009] [Indexed: 11/18/2022] Open
Abstract
The ovarian cancer microenvironment recruits an array of immune cells to the site of tumor growth. Within the peritoneal ascites of both humans and mice, the predominant population of tumor-infiltrating leukocytes is a CD11c(+)CD11b(+) population variably referred to as vascular leukocytes (VLCs), tumor-associated macrophages, and immature dendritic cells. We have previously shown that these cells are critical for tumor growth because their selective elimination from the peritoneal tumor microenvironment inhibited tumor progression. However, the underlying mechanism by which this therapy was efficacious is poorly understood. Here, we use the murine ID8 ovarian tumor model to demonstrate that the tumor microenvironment induces in vivo immunosuppression of T cells and that the SR-A(+) VLCs mediate this suppression. Importantly, the elimination of SR-A(+) VLCs from the peritoneum of tumor-bearing mice relieves the T cell suppression. Moreover, the profound changes that VLC elimination has on the immune system are T cell-dependent because the protective antitumor effect of VLC elimination does not occur when CD8 T cells are concomitantly depleted. These results were confirmed and extended with the use of a genetic model for VLC depletion, which demonstrated that short-term therapeutic depletion of VLCs alleviates immunosuppression and allows for efficacious vaccination against model tumor antigens in tumor-bearing mice. These studies provide a mechanistic explanation for how leukocytes contribute to ovarian tumor progression and, correspondingly, how leukocyte depletion inhibits tumor growth.
Collapse
|
32
|
Dinosaurs and ancient civilizations: reflections on the treatment of cancer. Neoplasia 2011; 12:957-68. [PMID: 21170260 DOI: 10.1593/neo.101588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022] Open
Abstract
Research efforts in the area of palaeopathology have been seen as an avenue to improve our understanding of the pathogenesis of cancer. Answers to questions of whether dinosaurs had cancer, or if cancer plagued ancient civilizations, have captured the imagination as well as the popular media. Evidence for dinosaurian cancer may indicate that cancer may have been with us from the dawn of time. Ancient recorded history suggests that past civilizations attempted to fight cancer with a variety of interventions. When contemplating the issue why a generalized cure for cancer has not been found, it might prove useful to reflect on the relatively limited time that this issue has been an agenda item of governmental attention as well as continued introduction of an every evolving myriad of manmade carcinogens relative to the total time cancer has been present on planet Earth. This article reflects on the history of cancer and the progress made following the initiation of the "era of cancer chemotherapy."
Collapse
|
33
|
Cripps JG, Wang J, Maria A, Blumenthal I, Gorham JD. Type 1 T helper cells induce the accumulation of myeloid-derived suppressor cells in the inflamed Tgfb1 knockout mouse liver. Hepatology 2010; 52:1350-9. [PMID: 20803559 PMCID: PMC2947571 DOI: 10.1002/hep.23841] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Immune-mediated liver injury in hepatitis is due to activated T cells producing interferon-γ (IFN-γ). It is important to identify negative feedback immune mechanisms that can regulate T cell activity. In this study, we demonstrate that liver inflammation mediated by type 1 T helper (Th1) cells can induce the accumulation of myeloid-derived suppressor cells (MDSCs), pleiomorphic cells capable of modulating T cell-mediated immunity, that heretofore have been studied almost exclusively in the context of tumor-associated inflammation. Mice deficient in the gene encoding transforming growth factor-β1 (Tgfb1(-/-) mice) acutely develop liver necroinflammation caused by IFN-γ-producing clusters of differentiation 4-positive (CD4(+)) T cells. Liver Th1 cell accumulation was accompanied by myeloid cells expressing CD11b and Gr1, phenotypic hallmarks of MDSCs. Isolated Tgfb1(-/-) liver CD11b(+)Gr1(+) cells were functional MDSCs, readily suppressing T cell proliferation in vitro. Pharmacologic inhibitors of inducible nitric oxide (NO) synthase completely eliminated suppressor function. Suppressor function and the production of NO were dependent on cell-cell contact between MDSCs and T cells, and upon IFN-γ, and were specifically associated with the "monocytic" CD11b(+)Ly6G(-) Ly6C(hi) subset of liver Tgfb1(-/-) CD11b(+) cells. The rapid accumulation of CD11b(+)Gr1(+) cells in Tgfb1(-/-) liver was abrogated when mice were either depleted of CD4(+) T cells or rendered unable to produce IFN-γ, showing that Th1 activity induces MDSC accumulation. CONCLUSION Th1 liver inflammation mobilizes an MDSC response that, through the production of NO, can inhibit T cell proliferation. We propose that MDSCs serve an important negative feedback function in liver immune homeostasis, and that insufficient or inappropriate activity of this cell population may contribute to inflammatory liver pathology.
Collapse
Affiliation(s)
- James G Cripps
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
34
|
The War on Cancer rages on. Neoplasia 2010; 11:1252-63. [PMID: 20019833 DOI: 10.1593/neo.91866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 02/08/2023] Open
Abstract
In 1971, the "War on Cancer" was launched by the US government to cure cancer by the 200-year anniversary of the founding of the United States of America, 1976. This article briefly looks back at the progress that has been made in cancer research and compares progress made in other areas of human affliction. While progress has indeed been made, the battle continues to rage on.
Collapse
|