1
|
Díaz-Alvarez L, López-Cortés GI, Pérez-Figueroa E. Immunomodulation exerted by galectins: a land of opportunity in rare cancers. Front Immunol 2023; 14:1301025. [PMID: 38022609 PMCID: PMC10663293 DOI: 10.3389/fimmu.2023.1301025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rare cancers represent only 5% of newly diagnosed malignancies. However, in some cases, they account for up to 50% of the deaths attributed to cancer in their corresponding organ. Part of the reason is that treatment options are generally quite limited, non-specific, and very often, only palliative. Needless to say, research for tailored treatments is warranted. Molecules that exert immunomodulation of the tumor microenvironment are attractive drug targets. One such group is galectins. Thus, in this review we summarize the current knowledge about galectin-mediated immunomodulation in rare cancers, highlighting the research opportunities in each case.
Collapse
Affiliation(s)
- Laura Díaz-Alvarez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Erandi Pérez-Figueroa
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas, Instituto de Investigaciones Biomédicas e Instituto Nacional de Neurología y Neurocirugía, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Liu C, Wang X, Zhu H, Wang K, Yu M, Zhang Y, Su M, Rong X, Sheng W, Zhu B. Multifunctional Theranostic Probe Based on the Pim-1 Kinase Inhibitor with the Function of Tracking pH Fluctuations during Treatment. Anal Chem 2023; 95:11732-11740. [PMID: 37490364 DOI: 10.1021/acs.analchem.3c01818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Currently, kinase inhibitors have been applied in the diagnosis or treatment of cancer with their unique advantages. It is of great significance to develop some comprehensive theranostic reagents based on kinase inhibitors to improve the performance of reagents for biomedical applications. Besides, tracking changes in the intracellular environment (e.g., pH) during cancer development and drug delivery is also critical for cancer research and treatment. Therefore, it is an urgent desire to design some novel multifunctional reagents based on kinase inhibitor strategies that can trace changes in the microenvironment of cancer cells. In this paper, a multifunctional theranostic reagent based on Pim-1 kinase inhibitor 5-bromobenzofuran-2-carboxylic acid is proposed. The theranostic probe binds to tumor-specific Pim-1 kinase, releases strong fluorescence, and produces cytotoxicity, thus achieving cell screening and killing effects. Furthermore, the probe can specifically target lysosomes and sensitively respond to pH. It can be used to track the pH changes in the intracellular environment under conditions of autophagy and external stimulation, as a visual tool to monitor pH fluctuations during cancer treatment. In conclusion, this simple but multifunctional theranostic reagent proposed in this work is expected to provide a promising method for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
3
|
Davis-Gilbert Z, Krämer A, Dunford JE, Howell S, Senbabaoglu F, Wells CI, Bashore FM, Havener TM, Smith JL, Hossain MA, Oppermann U, Drewry DH, Axtman AD. Discovery of a Potent and Selective Naphthyridine-Based Chemical Probe for Casein Kinase 2. ACS Med Chem Lett 2023; 14:432-441. [PMID: 37077385 PMCID: PMC10108397 DOI: 10.1021/acsmedchemlett.2c00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Naphthyridine-based inhibitors were synthesized to yield a potent and cell-active inhibitor of casein kinase 2 (CK2). Compound 2 selectively inhibits CK2α and CK2α' when profiled broadly, thereby making it an exquisitely selective chemical probe for CK2. A negative control that is structurally related but lacks a key hinge-binding nitrogen (7) was designed on the basis of structural studies. Compound 7 does not bind CK2α or CK2α' in cells and demonstrates excellent kinome-wide selectivity. Differential anticancer activity was observed when compound 2 was profiled alongside a structurally distinct CK2 chemical probe: SGC-CK2-1. This naphthyridine-based chemical probe (2) represents one of the best available small molecule tools with which to interrogate biology mediated by CK2.
Collapse
Affiliation(s)
- Zachary
W. Davis-Gilbert
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andreas Krämer
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Strabe 9, Frankfurt 60438, Germany
- Structural
Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, Frankfurt 60438, Germany
- Frankfurt
Cancer Institute, Paul-Ehrlich-Straße
42-44, Frankfurt 60596, Germany
| | - James E. Dunford
- Botnar
Research Centre, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7LD, United Kingdom
| | - Stefanie Howell
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Filiz Senbabaoglu
- Botnar
Research Centre, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7LD, United Kingdom
| | - Carrow I. Wells
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frances M. Bashore
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tammy M. Havener
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffery L. Smith
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mohammad A. Hossain
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Udo Oppermann
- Botnar
Research Centre, Nuffield Department of Orthopaedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford OX3 7LD, United Kingdom
- Oxford
Translational
Myeloma Centre, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - David H. Drewry
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Al Shihabi A, Davarifar A, Nguyen HTL, Tavanaie N, Nelson SD, Yanagawa J, Federman N, Bernthal N, Hornicek F, Soragni A. Personalized chordoma organoids for drug discovery studies. SCIENCE ADVANCES 2022; 8:eabl3674. [PMID: 35171675 PMCID: PMC8849332 DOI: 10.1126/sciadv.abl3674] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Chordomas are rare tumors of notochordal origin, most commonly arising in the sacrum or skull base. Chordomas are considered insensitive to conventional chemotherapy, and their rarity complicates running timely and adequately powered trials to identify effective treatments. Therefore, there is a need for discovery of novel therapeutic approaches. Patient-derived organoids can accelerate drug discovery and development studies and predict patient responses to therapy. In this proof-of-concept study, we successfully established organoids from seven chordoma tumor samples obtained from five patients presenting with tumors in different sites and stages of disease. The organoids recapitulated features of the original parent tumors and inter- as well as intrapatient heterogeneity. High-throughput screenings performed on the organoids highlighted targeted agents such as PI3K/mTOR, EGFR, and JAK2/STAT3 inhibitors among the most effective molecules. Pathway analysis underscored how the NF-κB and IGF-1R pathways are sensitive to perturbations and potential targets to pursue for combination therapy of chordoma.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D. Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Division of Thoracic Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Anderson E, Havener TM, Zorn KM, Foil DH, Lane TR, Capuzzi SJ, Morris D, Hickey AJ, Drewry DH, Ekins S. Synergistic drug combinations and machine learning for drug repurposing in chordoma. Sci Rep 2020; 10:12982. [PMID: 32737414 PMCID: PMC7395084 DOI: 10.1038/s41598-020-70026-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Chordoma is a devastating rare cancer that affects one in a million people. With a mean-survival of just 6 years and no approved medicines, the primary treatments are surgery and radiation. In order to speed new medicines to chordoma patients, a drug repurposing strategy represents an attractive approach. Drugs that have already advanced through human clinical safety trials have the potential to be approved more quickly than de novo discovered medicines on new targets. We have taken two strategies to enable this: (1) generated and validated machine learning models of chordoma inhibition and screened compounds of interest in vitro. (2) Tested combinations of approved kinase inhibitors already being individually evaluated for chordoma. Several published studies of compounds screened against chordoma cell lines were used to generate Bayesian Machine learning models which were then used to score compounds selected from the NIH NCATS industry-provided assets. Out of these compounds, the mTOR inhibitor AZD2014, was the most potent against chordoma cell lines (IC50 0.35 µM U-CH1 and 0.61 µM U-CH2). Several studies have shown the importance of the mTOR signaling pathway in chordoma and suggest it as a promising avenue for targeted therapy. Additionally, two currently FDA approved drugs, afatinib and palbociclib (EGFR and CDK4/6 inhibitors, respectively) demonstrated synergy in vitro (CI50 = 0.43) while AZD2014 and afatanib also showed synergy (CI50 = 0.41) against a chordoma cell in vitro. These findings may be of interest clinically, and this in vitro- and in silico approach could also be applied to other rare cancers.
Collapse
Affiliation(s)
- Edward Anderson
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tammy M Havener
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Stephen J Capuzzi
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dave Morris
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony J Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RTI International, Research Triangle Park, NC, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sean Ekins
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| |
Collapse
|
6
|
Hoffman SE, Al Abdulmohsen SA, Gupta S, Hauser BM, Meredith DM, Dunn IF, Bi WL. Translational Windows in Chordoma: A Target Appraisal. Front Neurol 2020; 11:657. [PMID: 32733369 PMCID: PMC7360834 DOI: 10.3389/fneur.2020.00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chordomas are rare tumors that are notoriously refractory to chemotherapy and radiotherapy when radical surgical resection is not achieved or upon recurrence after maximally aggressive treatment. The study of chordomas has been complicated by small patient cohorts and few available model systems due to the rarity of these tumors. Emerging next-generation sequencing technologies have broadened understanding of this disease by implicating novel pathways for possible targeted therapy. Mutations in cell-cycle regulation and chromatin remodeling genes have been identified in chordomas, but their significance remains unknown. Investigation of the immune microenvironment of these tumors suggests that checkpoint protein expression may influence prognosis, and adjuvant immunotherapy may improve patient outcome. Finally, growing evidence supports aberrant growth factor signaling as potential pathogenic mechanisms in chordoma. In this review, we characterize the impact on treatment opportunities offered by the genomic and immunologic landscape of this tumor.
Collapse
Affiliation(s)
- Samantha E Hoffman
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sally A Al Abdulmohsen
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Blake M Hauser
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - David M Meredith
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Genetic aberrations and molecular biology of skull base chordoma and chondrosarcoma. Brain Tumor Pathol 2017; 34:78-90. [PMID: 28432450 DOI: 10.1007/s10014-017-0283-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Chordomas and chondrosarcomas are two major malignant bone neoplasms located at the skull base. These tumors are rarely metastatic, but can be locally invasive and resistant to conventional chemotherapies and radiotherapies. Accordingly, therapeutic approaches for the treatment of these tumors can be difficult. Additionally, their location at the skull base makes them problematic. Although accurate diagnosis of these tumors is important because of their distinct prognoses, distinguishing between these tumor types is difficult due to overlapping radiological and histopathological findings. However, recent accumulation of molecular and genetic studies, including extracranial location analysis, has provided us clues for accurate diagnosis. In this report, we review the genetic aberrations and molecular biology of these two tumor types. Among the abundant genetic features of these tumors, brachyury immunohistochemistry and direct sequencing of IDH1/2 are simple and useful techniques that can be used to distinguish between these tumors. Although it is still unclear why these tumors, which have such distinct genetic backgrounds, show similar histopathological findings, comparison of their genetic backgrounds could provide essential information.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Clival chordomas are rare malignant tumors associated with a poor prognosis. In this article, we review the current literature to identify a variety of strategies that provide guidelines toward the optimal management for this aggressive tumor. RECENT FINDINGS Molecular disease, particularly, the development of characterized chordoma cell lines, has become one of the new cornerstones for the histological diagnosis of chordomas and for the development of effective chemotherapeutic agents against this tumor. Brachyury, a transcription factor in notochord development, seems to provide an excellent diagnostic marker for chordoma and may also prove to be a valuable target for chordoma therapy. Aggressive cytoreductive surgery aiming for gross total resection with maintenance of key neurovascular structures, followed by proton beam or hadron radiation, provides the best local recurrence and overall survival rates. SUMMARY Clival chordomas are locally aggressive tumors that are challenging to treat because of their unique biology, proximity to key neurovascular structures and poor prognosis. Currently, chordomas are optimally managed with aggressive surgery, whilst preserving key structures, and postoperative radiation in a multidisciplinary setting with an experienced team. The advancement of molecular techniques offers exciting future diagnostic and therapeutic options in the management of chordomas.
Collapse
|
9
|
Di Maio S, Yip S, Al Zhrani GA, Alotaibi FE, Al Turki A, Kong E, Rostomily RC. Novel targeted therapies in chordoma: an update. Ther Clin Risk Manag 2015; 11:873-83. [PMID: 26097380 PMCID: PMC4451853 DOI: 10.2147/tcrm.s50526] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chordomas are rare, locally aggressive skull base neoplasms known for local recurrence and not-infrequent treatment failure. Current evidence supports the role of maximal safe surgical resection. In addition to open skull-base approaches, the endoscopic endonasal approach to clival chordomas has been reported with favorable albeit early results. Adjuvant radiation is prescribed following complete resection, alternatively for gross residual disease or at the time of recurrence. The modalities of adjuvant radiation therapy reported vary widely and include proton-beam, carbon-ion, fractionated photon radiotherapy, and photon and gamma-knife radiosurgery. As of now, no direct comparison is available, and high-level evidence demonstrating superiority of one modality over another is lacking. While systemic therapies have yet to form part of any first-line therapy for chordomas, a number of targeted agents have been evaluated to date that inhibit specific molecules and their respective pathways known to be implicated in chordomas. These include EGFR (erlotinib, gefitinib, lapatinib), PDGFR (imatinib), mTOR (rapamycin), and VEGF (bevacizumab). This article provides an update of the current multimodality treatment of cranial base chordomas, with an emphasis on how current understanding of molecular pathogenesis provides a framework for the development of novel targeted approaches.
Collapse
Affiliation(s)
- Salvatore Di Maio
- Division of Neurosurgery, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gmaan A Al Zhrani
- National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia ; Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Fahad E Alotaibi
- National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia ; Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Abdulrahman Al Turki
- National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia ; Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Esther Kong
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Robert C Rostomily
- Department of Neurological Surgery, University of Washington, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
10
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|