1
|
Valioglu F, Valipour F, Atazadeh S, Hasansadeh M, Khosrowshahi ND, Nezamdoust FV, Mohammad-Jafarieh P, Rahbarghazi R, Mahdipour M. Recent advances in shape memory scaffolds and regenerative outcomes. Biomed Eng Lett 2024; 14:1279-1301. [PMID: 39465110 PMCID: PMC11502725 DOI: 10.1007/s13534-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.
Collapse
Affiliation(s)
- Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Fereshteh Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Atazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Maryam Hasansadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | | | - Fereshteh Vaziri Nezamdoust
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Mohammad-Jafarieh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Mahadi N, Rahman A, Prasad C, Govinda V, Choi HY, Shin EJ. Synergistic effects of cellulose nanocrystal on the mechanical and shape memory properties of TPU composites. Int J Biol Macromol 2024; 278:134842. [PMID: 39159801 DOI: 10.1016/j.ijbiomac.2024.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Cellulose nanocrystal is a nanomaterial that has a large specific surface area, high surface energy, and high strength. As well, it is biocompatible, environmentally friendly, nontoxic, and can be extracted from biomass resources. Because of these features, cellulose nanocrystals can be used to improve the mechanical properties of polymer matrices with a shape memory effect and as a shape memory switch. In this study, a polytrimethylene ether glycol-based thermoplastic polyurethane (TPU)/cellulose nanocrystal (CNC) composite was prepared via an in-situ polymerization process to create a self-healing polymer matrix. Also, the effect of CNC doses in low concentrations (≤2 wt%) on the different properties of the resulting bio-nanocomposite was investigated. The results showed that the introduction of CNCs affects the hydrogen bonding within the polymer matrix and provides better thermal stability in the high temperature range than pure TPU. Furthermore, the samples with 0 wt%, 0.75 wt%, 1 wt%, and 2 wt% of CNC exhibited an increasing trend in tensile strength with values of 11.71 MPa, 18.95 MPa, 17.88 MPa, and 26.18 MPa, respectively, which indicates a remarkable improvement in mechanical strength. The shape memory behavior was also notably prominent in this polymer composite, where the composite containing 2 wt% of CNC showed the fastest recovery time (240 s) at 75 °C with the highest shape retention. Moreover, their flow behavior and deformation capacity were examined through rheology tests. Besides, docking simulations were conducted in silico to assess the interaction of the TPU/CNC composite with the DNA gyrase enzyme. The interaction between CNC/TPU composite and DNA gyrase was meticulously analyzed across 10 distinct conformations, yielding docking scores ranging from -6.5 Kcal/mol to -5.3 Kcal/mol. Overall, the physico-mechanical properties of the TPU/CNC composites were substantially enhanced with the incorporation of nanofillers.
Collapse
Affiliation(s)
- Naiem Mahadi
- Department of Fashion and Textile, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - Ashikur Rahman
- Department of Fashion and Textile, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - Cheera Prasad
- Department of Chemical Engineering, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - V Govinda
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses, Rushikonda Campus, Visakhapatnam -530045, India
| | - Hyeong Yeol Choi
- Department of Fashion and Textile, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea.
| | - Eun Joo Shin
- Department of Chemical Engineering, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea.
| |
Collapse
|
3
|
Pekol C, Furst J, Li Y, Keum J, Harper DP. 3D Printing of Thermally Responsive Shape Memory Liquid Crystalline Epoxy Networks. ACS OMEGA 2024; 9:40801-40809. [PMID: 39371980 PMCID: PMC11447742 DOI: 10.1021/acsomega.4c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024]
Abstract
A two-component liquid crystalline epoxy network (LCEN) with shape memory behavior was developed and evaluated as a candidate material for 3D printing. The cure kinetics of the uncured material and the shape memory properties of the cured LCEN were investigated by using parallel plate rheology and dynamic mechanical analysis, respectively. A commercially available fumed silica additive was introduced to the neat, uncured material to improve the rheological properties for 3D printing. The addition of fumed silica was found to increase the yield stress, shear-thinning behavior, and toughness of the uncured epoxy ink. Polarized light microscopy, differential scanning calorimetry, and wide-angle X-ray scattering measurements between the neat and additive-modified LCEN suggested a reduction in liquid crystalline alignment in the modified LCEN, owing to interactions between crystalline domains and fumed silica, which in turn influenced the mechanical behavior. Overall, the additive was found to be successful in preserving the shape memory properties of LCEN while improving its printability.
Collapse
Affiliation(s)
- Collin Pekol
- Department
of Materials Science and Engineering, The
University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| | - Jacob Furst
- Department
of Materials Science and Engineering, The
University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| | - Yuzhan Li
- School
of Materials Science and Engineering, University
of Science and Technology, Beijing 100083, China
| | - Jong Keum
- Spallation
Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - David P. Harper
- Center
for Renewable Carbon, University of Tennessee, Knoxville, Tennessee 37996-4570, United
States
| |
Collapse
|
4
|
Oguntade E, Wigham C, Owuor L, Aryal U, O'Grady K, Acierto A, Zha RH, Henderson JH. Dry and wet wrinkling of a silk fibroin biopolymer by a shape-memory material with insight into mechanical effects on secondary structures in the silk network. J Mater Chem B 2024; 12:6351-6370. [PMID: 38864220 DOI: 10.1039/d4tb00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Surface wrinkling provides an approach to modify the surfaces of biomedical devices to better mimic features of the extracellular matrix and guide cell attachment, proliferation, and differentiation. Biopolymer wrinkling on active materials holds promise but is poorly explored. Here we report a mechanically actuated assembly process to generate uniaxial micro-and nanosized silk fibroin (SF) wrinkles on a thermo-responsive shape-memory polymer (SMP) substrate, with wrinkling demonstrated under both dry and hydrated (cell compatible) conditions. By systematically investigating the influence of SMP programmed strain magnitude, film thickness, and aqueous media on wrinkle stability and morphology, we reveal how to control the wrinkle sizes on the micron and sub-micron length scale. Furthermore, as a parameter fundamental to SMPs, we demonstrate that the temperature during the recovery process can also affect the wrinkle characteristics and the secondary structures in the silk network. We find that with increasing SMP programmed strain magnitude, silk wrinkled topographies with increasing wavelengths and amplitudes are achieved. Furthermore, silk wrinkling is found to increase β-sheet content, with spectroscopic analysis suggesting that the effect may be due primarily to tensile (e.g., Poisson effect and high-curvature wrinkle) loading modes in the SF, despite the compressive bulk deformation (uniaxial contraction) used to produce wrinkles. Silk wrinkles fabricated from sufficiently thick films (roughly 250 nm) persist after 24 h in cell culture medium. Using a fibroblast cell line, analysis of cellular response to the wrinkled topographies reveals high viability and attachment. These findings demonstrate use of wrinkled SF films under physiologically relevant conditions and suggest the potential for biopolymer wrinkles on biomaterials surfaces to find application in cell mechanobiology, wound healing, and tissue engineering.
Collapse
Affiliation(s)
- Elizabeth Oguntade
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Caleb Wigham
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Luiza Owuor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Ujjwal Aryal
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Kerrin O'Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Anthony Acierto
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James H Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
6
|
Schönfeld D, Koss S, Vohl N, Friess F, Drescher D, Pretsch T. Dual Stimuli-Responsive Orthodontic Aligners: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3094. [PMID: 37109929 PMCID: PMC10145520 DOI: 10.3390/ma16083094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Aligner therapy for orthodontic tooth movement is gaining importance in orthodontics. The aim of this contribution is to introduce a thermo- and water-responsive shape memory polymer (SMP), which could lay the foundation for a new type of aligner therapy. The thermal, thermo-mechanical, and shape memory properties of thermoplastic polyurethane were studied by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and various practical experiments. The glass transition temperature of the SMP relevant for later switching was determined to be 50 °C in the DSC, while the tan δ peak was detected at 60 °C in the DMA. A biological evaluation was carried out using mouse fibroblast cells, which showed that the SMP is not cytotoxic in vitro. On a digitally designed and additively manufactured dental model, four aligners were fabricated from an injection-molded foil using a thermoforming process. The aligners were then heated and placed on a second denture model which had a malocclusion. After cooling, the aligners were in a programmed shape. The movement of a loose, artificial tooth and thus the correction of the malocclusion could be realized by thermal triggering the shape memory effect, at which the aligner corrected a displacement with an arc length of approximately 3.5 mm. The developed maximum force was separately determined to be about 1 N. Moreover, shape recovery of another aligner was realized within 20 h in 37 °C water. In perspective, the present approach can help to reduce the number of orthodontic aligners in therapy and thus avoid excessive material waste.
Collapse
Affiliation(s)
- Dennis Schönfeld
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Samantha Koss
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Nils Vohl
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Fabian Friess
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany
| | - Dieter Drescher
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thorsten Pretsch
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
8
|
Application of 4D printing and AI to cardiovascular devices. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Fully-Printable Soft Actuator with Variable Stiffness by Phase Transition and Hydraulic Regulations. ACTUATORS 2021. [DOI: 10.3390/act10100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Actuators with variable stiffness have vast potential in the field of compliant robotics. Morphological shape changes in the actuators are possible, while they retain their structural strength. They can shift between a rigid load-carrying state and a soft flexible state in a short transition period. This work presents a hydraulically actuated soft actuator fabricated by a fully 3D printing of shape memory polymer (SMP). The actuator shows a stiffness of 519 mN/mm at 20 ∘C and 45 mN/mm at 50 ∘C at the same pressure (0.2 MPa). This actuator demonstrates a high stiffness variation of 474 mN/mm (10 times the baseline stiffness) for a temperature change of 30 ∘C and a large variation (≈1150%) in average stiffness. A combined variation of both temperature (20–50 ∘C) and pressure (0–0.2 MPa) displays a stiffness variation of 501 mN/mm. The pressure variation (0–0.2 MPa) in the actuator also shows a large variation in the output force (1.46 N) at 50 ∘C compared to the output force variation (0.16 N) at 20 ∘C. The pressure variation is further utilized for bending the actuator. Varying the pressure (0–0.2 MPa) at 20 ∘C displayed no bending in the actuator. In contrast, the same variation of pressure at 50 ∘C displayed a bending angle of 80∘. A combined variation of both temperature (20–50 ∘C) and pressure (0–0.2 MPa) shows the ability to bend 80∘. At the same time, an additional weight (300 g) suspended to the actuator could increase its bending capability to 160∘. We demonstrated a soft robotic gripper varying its stiffness to carry various objects.
Collapse
|
10
|
Alauzen T, Ross S, Madbouly S. Biodegradable shape-memory polymers and composites. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymers have recently been making media headlines in various negative ways. To combat the negative view of those with no polymer experience, sustainable and biodegradable materials are constantly being researched. Shape-memory polymers, also known as SMPs, are a type of polymer material that is being extensively researched in the polymer industry. These SMPs can exhibit a change in shape because of an external stimulus. SMPs that are biodegradable or biocompatible are used extensively in medical applications. The use of biodegradable SMPs in the medical field has also led to research of the material in other applications. The following categories used to describe SMPs are discussed: net points, composition, stimulus, and shape-memory function. The addition of fillers or additives to the polymer matrix makes the SMP a polymer composite. Currently, biodegradable fillers are at the forefront of research because of the demand for sustainability. Common biodegradable fillers or fibers used in polymer composites are discussed in this chapter including Cordenka, hemp, and flax. Some other nonbiodegradable fillers commonly used in polymer composites are evaluated including clay, carbon nanotubes, bioactive glass, and Kevlar. The polymer and filler phase differences will be evaluated in this chapter. The recent advances in biodegradable shape-memory polymers and composites will provide a more positive perspective of the polymer industry and help to attain a more sustainable future.
Collapse
Affiliation(s)
- Tanner Alauzen
- Plastics Engineering Technology , Penn State Behrend , Erie , USA
| | - Shaelyn Ross
- Plastics Engineering Technology , Penn State Behrend , Erie , USA
| | - Samy Madbouly
- Plastics Engineering Technology , Penn State Behrend , Erie , USA
| |
Collapse
|
11
|
Hardy JG, Sdepanian S, Stowell AF, Aljohani AD, Allen MJ, Anwar A, Barton D, Baum JV, Bird D, Blaney A, Brewster L, Cheneler D, Efremova O, Entwistle M, Esfahani RN, Firlak M, Foito A, Forciniti L, Geissler SA, Guo F, Hathout RM, Jiang R, Kevin P, Leese D, Low WL, Mayes S, Mozafari M, Murphy ST, Nguyen H, Ntola CNM, Okafo G, Partington A, Prescott TAK, Price SP, Soliman S, Sutar P, Townsend D, Trotter P, Wright KL. Potential for Chemistry in Multidisciplinary, Interdisciplinary, and Transdisciplinary Teaching Activities in Higher Education. JOURNAL OF CHEMICAL EDUCATION 2021; 98:1124-1145. [DOI: 10.1021/acs.jchemed.0c01363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Affiliation(s)
- John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
| | - Stephanie Sdepanian
- Royal Society of Chemistry, Thomas Graham House, 290 Cambridge Science Park Milton Road, Milton, Cambridge CB4 0WF, England, United Kingdom
| | - Alison F. Stowell
- Department of Organisation, Work and Technology, Lancaster University Management School, Lancaster University, Lancaster LA1 4YX, England, United Kingdom
- The Pentland Centre for Sustainability in Business, Lancaster University, Lancaster LA1 4YX, England, United Kingdom
| | - Amal D. Aljohani
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
- Department of Chemistry (Female Section), Faculty of Science, King Abdulaziz University, 21589 Jeddah-Rabbigh, Saudi Arabia
| | - Michael J. Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, England, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, England, United Kingdom
| | - Ayaz Anwar
- Department of Biological Sciences, Sunway University, 47500 Selangor Darul Ehsan, Malaysia
| | - Dik Barton
- ArmaTrex Ltd., 19 Main Street, Ponteland, Newcastle upon Tyne NE20 9NH, England, United Kingdom
| | - John V. Baum
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
| | - David Bird
- Centre for Process Innovation (CPI), The Neville Hamlin Building, Thomas Wright Way, Sedgefield, County Durham TS21 3FG, England, United Kingdom
| | - Adam Blaney
- Lancaster Institute for Contemporary Arts, Lancaster University, Lancaster LA1 4ZA, England, United Kingdom
| | - Liz Brewster
- Lancaster Medical School, Lancaster University, Lancaster LA1 4AT, England, United Kingdom
| | - David Cheneler
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
- Department of Engineering, Lancaster University, Lancaster LA1 4YW, England, United Kingdom
| | - Olga Efremova
- NeuDrive Ltd., Keckwick Lane, Daresbury Laboratory, Sci-Tech, Daresbury, Warrington WA4 4AD, England, United Kingdom
| | - Michael Entwistle
- Partnerships and Business Engagement Team, Faculty of Science and Technology, Science and Technology Building, Lancaster University, Lancaster LA1 4YR, England, United Kingdom
| | - Reza N. Esfahani
- The Manufacturing Technology Centre, Ansty Business Park, Coventry CV7 9JU, England, United Kingdom
| | - Melike Firlak
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| | - Alex Foito
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | - Leandro Forciniti
- Becton Dickinson, Technology Development, 1 Becton Drive, J324b, Franklin Lakes, New Jersey 07417, United States
| | | | - Feng Guo
- Matregenix, 5270 California Avenue No. 300, Irvine, California 92617, United States
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Richard Jiang
- School of Computing and Communications, InfoLab21, South Drive, Lancaster University, Bailrigg, Lancaster LA1 4WA, England, United Kingdom
| | - Punarja Kevin
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
| | - David Leese
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, High Peak SK23 0PG, England, United Kingdom
| | - Wan Li Low
- School of Pharmacy, Wulfruna Building, University of Wolverhampton, Wolverhampton WV1 1LY, England, United Kingdom
| | - Sarah Mayes
- Alafair Biosciences Inc., Suite 2-225, 6101 W. Courtyard Drive, Austin, Texas 78730, United States
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Samuel T. Murphy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
- Department of Engineering, Lancaster University, Lancaster LA1 4YW, England, United Kingdom
| | - Hieu Nguyen
- New Orleans BioInnovation Center, AxoSim, Inc., 1441 Canal Street, Suite 205, New Orleans, Louisiana 70112, United States
| | - Chifundo N. M. Ntola
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - George Okafo
- George Okafo Pharma Consulting Ltd., Welwyn AL6 0QT, England, United Kingdom
| | - Adam Partington
- NGPod Global, I-TAC BIO 17, Keckwick Lane, Daresbury Laboratory, Sci-Tech, Daresbury, Cheshire WA4 4AD, England, United Kingdom
| | | | - Stephen P. Price
- Biotech Services Ltd., 1 Brookside Cottages, Congleton Road, Arclid, Sandbach, Cheshire CW11 4SN, England, United Kingdom
| | - Sherif Soliman
- Matregenix, 5270 California Avenue No. 300, Irvine, California 92617, United States
| | - Papri Sutar
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
| | - David Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, England, United Kingdom
- Centre for Global Eco-Innovation, Lancaster University, Lancaster LA1 4YQ, England, United Kingdom
| | - Patrick Trotter
- Medilink North of England, Hydra House, Hydra Business Park, Nether Lane, Sheffield S35 9ZX, England, United Kingdom
| | - Karen L. Wright
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, England, United Kingdom
| |
Collapse
|
12
|
García-González MC, Navarro-Huerta A, Rodríguez-Muñoz FC, Vera-Alvízar EG, Vera Ramírez MA, Rodríguez-Hernández J, Rodríguez M, Rodríguez-Molina B. The design of dihalogenated TPE monoboronate complexes as mechanofluorochromic crystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00442e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mechanofluorochromic crystals based on tetraphenylethylene and boronates reversibly change their emission upon grinding, setting the path to develop bistable switches in the future.
Collapse
Affiliation(s)
- Ma. Carmen García-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Armando Navarro-Huerta
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Fanny Chantal Rodríguez-Muñoz
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Estefanía Guadalupe Vera-Alvízar
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| | - Marco A. Vera Ramírez
- Laboratorio de RMN, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Ciudad de México, Mexico
| | - Joelis Rodríguez-Hernández
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25294, Mexico
| | - Mario Rodríguez
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, CIO, Apdo., Postal 1-948, 37000 León Gto, Mexico
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S.N., Coyoacán, Ciudad de México, 04510, Mexico
| |
Collapse
|