1
|
Dinesh R, Sreena CP, Sheeja TE, Srinivasan V, Subila KP, Sona C, Kumar IPV, Anusree M, Alagupalamuthirsolai M, Jayarajan K, Sajith V. Co-resistance is the dominant mechanism of co-selection and dissemination of antibiotic resistome in nano zinc oxide polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136885. [PMID: 39706021 DOI: 10.1016/j.jhazmat.2024.136885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The broader soil bacterial community responses at ecotoxicologically relevant levels of nano ZnO (nZnO) focussing on co-selection of antibiotic resistance (AR) were investigated. nZnO imposed a stronger influence than the bulk counterpart (bZnO) on antibiotic resistance genes (ARGs) with multidrug resistance (MDR) systems being predominant (63 % of total ARGs). Proliferation of biomarker ARGs especially for last resort antibiotic like vancomycin was observed and Streptomyces hosted multiple ARGs. nZnO was the major driver of the resistome with efflux systems dominating the AR mechanism. Environmental risk associated with nZnO was mediated through metal driven co-selection of ARGs and their probable transfer to eukaryotic hosts through horizontal gene transfer (HGT) via mobile genetic elements (MGEs). Novel resistance genes tetA, mdtA, int and tnpA validated in our study can be used as biomarkers for rapid detection of nZnO toxicity in soils. qRT-PCR validation of resistome in the rhizosphere soil microbiome of turmeric indicated that Zn levels decreased by 16 % compared to bulk soil with 80 % bioaccumulation in rhizomes at 1000 mg Zn kg-1 and subsequent down regulation of ARGs. Expression of key biosynthetic genes for curcumin in turmeric rhizomes showed an increase up to 500 mg Zn kg-1 as nZnO. Validation of co-selection phenomenon in microcosm with 10 mg kg-1 tetracycline without added Zn indicated 20 % upregulation of Zn resistance genes (ZRGs) like czcA, yiip and zntA.
Collapse
Affiliation(s)
- R Dinesh
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - C P Sreena
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - T E Sheeja
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India.
| | - V Srinivasan
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - K P Subila
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - Charles Sona
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - I P Vijesh Kumar
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - M Anusree
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - M Alagupalamuthirsolai
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - K Jayarajan
- ICAR, Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Sajith
- National Institute of Technology, NIT Campus PO, Kozhikode, Kerala 673012, India
| |
Collapse
|
2
|
Firincă C, Zamfir LG, Constantin M, Răut I, Capră L, Popa D, Jinga ML, Baroi AM, Fierăscu RC, Corneli NO, Postolache C, Doni M, Gurban AM, Jecu L, Șesan TE. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J Xenobiot 2023; 14:51-78. [PMID: 38249101 PMCID: PMC10801475 DOI: 10.3390/jox14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Contamination of soil with heavy metals has become a matter of global importance due to its impact on agriculture, environmental integrity, and therefore human health and safety. Several microbial strains isolated from soil contaminated by long-term chemical and petrochemical activities were found to manifest various levels of tolerance to Cr, Pb, and Zn, out of which Bacillus marisflavi and Trichoderma longibrachiatum exhibited above-moderate tolerance. The concentrations of target heavy metals before and after bioremediation were determined using electrochemical screen-printed electrodes (SPE) modified with different nanomaterials. The morpho-structural SEM/EDX analyses confirmed the presence of metal ions on the surface of the cell, with metal uptake being mediated by biosorption with hydroxyl, carboxyl, and amino groups as per FTIR observations. T. longibrachiatum was observed to pose a higher bioremediation potential compared to B. marisflavi, removing 87% of Cr and 67% of Zn, respectively. Conversely, B. marisflavi removed 86% of Pb from the solution, compared to 48% by T. longibrachiatum. Therefore, the fungal strain T. longibrachiatum could represent a viable option for Cr and Zn bioremediation strategies, whereas the bacterial strain B. marisflavi may be used in Pb bioremediation applications.
Collapse
Affiliation(s)
- Cristina Firincă
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Lucian-Gabriel Zamfir
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Mariana Constantin
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Pharmacy, Faculty of Pharmacy, University Titu Maiorescu of Bucharest, 040441 Bucharest, Romania
| | - Iuliana Răut
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Capră
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Diana Popa
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Maria-Lorena Jinga
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Anda Maria Baroi
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Radu Claudiu Fierăscu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Nicoleta Olguța Corneli
- National Institute of Research and Development for Microbiology and Immunology—Cantacuzino, 103 Spl. Independenței, 050096 Bucharest, Romania
| | - Carmen Postolache
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Mihaela Doni
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Ana-Maria Gurban
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Jecu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Tatiana Eugenia Șesan
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
- Field Crop Section, Academy of Agricultural and Forestry Sciences, Bd Mărăști 61, 011464 Bucharest, Romania
| |
Collapse
|
3
|
Zhu HS, Liang X, Liu JC, Zhong HY, Yang YH, Guan WP, Du ZJ, Ye MQ. Antibiotic and Heavy Metal Co-Resistant Strain Isolated from Enrichment Culture of Marine Sediments, with Potential for Environmental Bioremediation Applications. Antibiotics (Basel) 2023; 12:1379. [PMID: 37760676 PMCID: PMC10526090 DOI: 10.3390/antibiotics12091379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics and heavy metals have caused serious contamination of the environment and even resulted in public health concerns. It has therefore become even more urgent to adopt a sustainable approach to combating these polluted environments. In this paper, we investigated the microbial community of marine sediment samples after 255 days of enrichment culture under Cu (II) and lincomycin stress and ZC255 was the most resistant strain obtained. The 16S rRNA gene sequence confirmed that it belonged to the genus Rossellomorea. Strain ZC255 was resistant to 12 kinds of antibiotics, and had a superior tolerance to Cu (II), Pb (II), Ni (II), Zn (II), Cr (III), and Cd (II). Moreover, it exhibits strong bioremoval ability of Cu and lincomycin. The removal efficiency of Cu (II) and lincomycin can achieve 651 mg/g biomass and 32.5 mg/g biomass, respectively. Strain ZC255 was a promising isolate for pollution bioremediation applications.
Collapse
Affiliation(s)
- Han-Sheng Zhu
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Xiao Liang
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Jun-Cheng Liu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Han-Yang Zhong
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Yuan-Hang Yang
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Wen-Peng Guan
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
| |
Collapse
|
4
|
Alam M, Bano N, Upadhyay TK, Binsuwaidan R, Alshammari N, Sharangi AB, Kaushal RS, Saeed M. Enzymatic Activity and Horizontal Gene Transfer of Heavy Metals and Antibiotic Resistant Proteus vulgaris from Hospital Wastewater: An Insight. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3399137. [PMID: 36523753 PMCID: PMC9747306 DOI: 10.1155/2022/3399137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 09/28/2023]
Abstract
Globally, the issue of microbial resistance to medicines and heavy metals is getting worse. There are few reports or data available for Proteus vulgaris (P. vulgaris), particularly in India. This investigation intends to reveal the bacteria's ability to transmit genes and their level of resistance as well. The wastewater samples were taken from several hospitals in Lucknow City, India, and examined for the presence of Gram-negative bacteria that were resistant to antibiotics and heavy metals. The microbial population count in different hospital wastewaters decreases with increasing concentrations of metal and antibiotics. Among all the examined metals, Ni and Zn had the highest viable counts, whereas Hg, Cd, and Co had the lowest viable counts. Penicillin, ampicillin, and amoxicillin, among the antibiotics, demonstrated higher viable counts, whereas tetracycline and erythromycin exhibited lower viable counts. The MIC values for the P. vulgaris isolates tested ranged from 50 to 16,00 μg/ml for each metal tested. The multiple metal resistance (MMR) index, which ranged from 0.04 to 0.50, showed diverse heavy metal resistance patterns in all P. vulgaris isolates (in the case of 2-7 metals in various combinations). All of the tested isolates had methicillin resistance, whereas the least number of isolates had ofloxacin, gentamycin, or neomycin resistance. The P. vulgaris isolates displayed multidrug resistance patterns (2-12 drugs) in various antibiotic combinations. The MAR indexes were shown to be between (0.02-0.7). From the total isolates, 98%, 84%, and 80% had urease, gelatinase, and amylase activity, whereas 68% and 56% displayed protease and beta-lactamase activity. Plasmids were present in all the selected resistant isolates and varied in size from 42.5 to 57.0 kb and molecular weight from 27.2 to 37.0 MD. The transmission of the antibiotic/metal resistance genes was evaluated between a total of 7 pairs of isolates. A higher transfer frequency (4.4 × 10-1) was observed among antibiotics, although a lower transfer frequency (1.0 × 10-2) was observed against metals in both the media from the entire site tested. According to exponential decay, the population of hospital wastewater declined in the following order across all sites: Site II > Site IV > Site III > Site I for antibiotics and site IV > site II > site I >site III for metal. Different metal and antibiotic concentrations have varying effects on the population. The metal-tolerant P. vulgaris from hospital wastewater was studied in the current study had multiple distinct patterns of antibiotic resistance. It could provide cutting-edge methods for treating infectious diseases, which are essential for managing and assessing the risks associated with hospital wastewater, especially in the case of P. vulgaris.
Collapse
Affiliation(s)
- Manzar Alam
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Nilofer Bano
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, West Bengal, India
| | - Radhey Shyam Kaushal
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
5
|
Sazykina M, Barabashin T, Konstantinova E, Al-Rammahi AAK, Pavlenko L, Khmelevtsova L, Karchava S, Klimova M, Mkhitaryan I, Khammami M, Sazykin I. Non-corresponding contaminants in marine surface sediments as a factor of ARGs spread in the Sea of Azov. MARINE POLLUTION BULLETIN 2022; 184:114196. [PMID: 36219972 DOI: 10.1016/j.marpolbul.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to analyze the level and total toxicity of the most common pollutants in surface sediments and assess their impact on the occurrence of antibiotic resistance genes (ARGs) in the Sea of Azov. Biotesting using the whole-cell bacterial lux-biosensors showed high integral toxicity of surface sediments and the presence of genotoxicants and substances that cause oxidative stress and protein damage. Using cluster analysis, it was shown that the distribution of pollutants in the Sea of Azov depends on the type of surface sediments. The relative abundance and distribution of 14 ARGs in surface sediments were shown. Principle component analyses results suggest that non-corresponding contaminants do not exert direct influence on the ARGs abundance in the surface sediments of the Sea of Azov. Thus, the need to investigate the significance of non-corresponding pollutants in the selection and distribution of ARGs in the aquatic environment remains a pressing problem.
Collapse
Affiliation(s)
- Marina Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| | - Timofey Barabashin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation; Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | | | | | - Liliya Pavlenko
- Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | - Lyudmila Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Shorena Karchava
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Maria Klimova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Irina Mkhitaryan
- Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | - Margarita Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Ivan Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| |
Collapse
|
6
|
Kalkan S. Heavy metal resistance of marine bacteria on the sediments of the Black Sea. MARINE POLLUTION BULLETIN 2022; 179:113652. [PMID: 35500375 DOI: 10.1016/j.marpolbul.2022.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Black Sea is unfortunately globally established as a highly polluted sea, with contaminants from various sources polluting its marine sediments. This study aimed at analyzing heavy metal resistance levels by heterotrophic bacteria colonizing marine sediments across Black Sea shores within Turkey. Twenty-nine bacterial samples from marine sediments were investigated through exposure to sixteen heavy metal salts using the microdilution method. The minimum inhibitory concentration values for bacterial colonies within such marine sediment samples ranged from <0.97 mM/L to >1000 mM/L. Trough and peak minimum inhibitory concentration values were determined at <0.17 mg/mL and > 331 mg/mL. Peak tolerated and peak toxic heavy metals were identified as iron and cadmium, respectively. Resistance ratios were also obtained in this study. Bacillus wiedmannii was identified as the most resistant bacterial population when exposed to heavy metal salts. This study shows occurrence of heavy metal resistant bacteria within Black Sea sediments.
Collapse
Affiliation(s)
- Samet Kalkan
- Recep Tayyip Erdogan University, Faculty of Fisheries, Ataturk Street Fener District, 53100 Merkez, Rize, Turkey.
| |
Collapse
|