1
|
Zhang NN, Lu CY, Chen MJ, Xu XL, Shu GF, Du YZ, Ji JS. Recent advances in near-infrared II imaging technology for biological detection. J Nanobiotechnology 2021; 19:132. [PMID: 33971910 PMCID: PMC8112043 DOI: 10.1186/s12951-021-00870-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.![]()
Collapse
Affiliation(s)
- Nan-Nan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Chen-Ying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
2
|
Abstract
Cellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.
Collapse
|
3
|
Miao Y, Gu C, Zhu Y, Yu B, Shen Y, Cong H. Recent Progress in Fluorescence Imaging of the Near‐Infrared II Window. Chembiochem 2018; 19:2522-2541. [DOI: 10.1002/cbic.201800466] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yawei Miao
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Chuantao Gu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Yaowei Zhu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Bing Yu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Youqing Shen
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
- Center for Bionanoengineering and Key Laboratory of Biomass, Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P.R. China
| | - Hailin Cong
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| |
Collapse
|
4
|
Ge H, Riss PJ, Mirabello V, Calatayud DG, Flower SE, Arrowsmith RL, Fryer TD, Hong Y, Sawiak S, Jacobs RM, Botchway SW, Tyrrell RM, James TD, Fossey JS, Dilworth JR, Aigbirhio FI, Pascu SI. Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules In Vitro and In Vivo. Chem 2017. [DOI: 10.1016/j.chempr.2017.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Alidori S, Thorek DLJ, Beattie BJ, Ulmert D, Almeida BA, Monette S, Scheinberg DA, McDevitt MR. Carbon nanotubes exhibit fibrillar pharmacology in primates. PLoS One 2017; 12:e0183902. [PMID: 28846728 PMCID: PMC5573305 DOI: 10.1371/journal.pone.0183902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/14/2017] [Indexed: 01/15/2023] Open
Abstract
Nanomedicine rests at the nexus of medicine, bioengineering, and biology with great potential for improving health through innovation and development of new drugs and devices. Carbon nanotubes are an example of a fibrillar nanomaterial poised to translate into medical practice. The leading candidate material in this class is ammonium-functionalized carbon nanotubes (fCNT) that exhibits unexpected pharmacological behavior in vivo with important biotechnology applications. Here, we provide a multi-organ evaluation of the distribution, uptake and processing of fCNT in nonhuman primates using quantitative whole body positron emission tomography (PET), compartmental modeling of pharmacokinetic data, serum biomarkers and ex vivo pathology investigation. Kidney and liver are the two major organ systems that accumulate and excrete [86Y]fCNT in nonhuman primates and accumulation is cell specific as described by compartmental modeling analyses of the quantitative PET data. A serial two-compartment model explains renal processing of tracer-labeled fCNT; hepatic data fits a parallel two-compartment model. These modeling data also reveal significant elimination of the injected activity (>99.8%) from the primate within 3 days (t1/2 = 11.9 hours). These favorable results in nonhuman primates provide important insight to the fate of fCNT in vivo and pave the way to further engineering design considerations for sophisticated nanomedicines to aid late stage development and clinical use in man.
Collapse
Affiliation(s)
- Simone Alidori
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Daniel L. J. Thorek
- Departments of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Bradley J. Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - David Ulmert
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Bryan Aristega Almeida
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Sebastien Monette
- Tri-Instituitional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, United States of America
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Michael R. McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Alidori S, Bowman RL, Yarilin D, Romin Y, Barlas A, Mulvey JJ, Fujisawa S, Xu K, Ruggiero A, Riabov V, Thorek DLJ, Ulmert HDS, Brea EJ, Behling K, Kzhyshkowska J, Manova-Todorova K, Scheinberg DA, McDevitt MR. Deconvoluting hepatic processing of carbon nanotubes. Nat Commun 2016; 7:12343. [PMID: 27468684 PMCID: PMC4974572 DOI: 10.1038/ncomms12343] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. Application of carbon nanotubes as drug delivery carriers is stalled by uncertainties over their distribution and toxicity in vivo. Here, the authors use animal models to show that, while the bulk of nanotubes is renally cleared, a fraction can be eliminated through an alternative hepatobiliary pathway.
Collapse
Affiliation(s)
- Simone Alidori
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Robert L Bowman
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Dmitry Yarilin
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - J Justin Mulvey
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Sho Fujisawa
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Ke Xu
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Alessandro Ruggiero
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Cambridge University Health Partners, Cambridge CB23 3RE, UK
| | - Vladimir Riabov
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim 68167, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| | - Daniel L J Thorek
- Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Hans David S Ulmert
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Elliott J Brea
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Katja Behling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim 68167, Germany.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.,Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim 68167, Germany
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - David A Scheinberg
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.,Department of Pharmacology, Weill Cornell Medical College, New York 10065, USA
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York 10065, USA
| |
Collapse
|