1
|
Kim JS, Nam H, Kim EC, Jeong HJ, Lee SJ. Bioengineered Approaches for Esophageal Regeneration: Advancing Esophageal Cancer Therapy. Bioengineering (Basel) 2025; 12:479. [PMID: 40428100 PMCID: PMC12109178 DOI: 10.3390/bioengineering12050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Esophageal cancer (EC) is the eighth leading cause of cancer-related deaths globally, largely due to its late-stage diagnosis and aggressive progression. Esophagectomy remains the primary treatment, typically requiring organ-based reconstruction techniques such as gastric pull-up or colonic interposition. However, these reconstruction methods often lead to severe complications, significantly reducing the quality of life of patients. To address these limitations, tissue engineering has emerged as a promising alternative, offering bioengineered patch-type and tubular-type scaffolds designed to restore both structural integrity and functional regeneration. Recent advancements in three-dimensional (3D) biofabrication-including 3D bioprinting, electrospinning, and other cutting-edge techniques-have facilitated the development of patient-specific constructs with improved biocompatibility. Despite significant advancements, critical challenges persist in achieving mechanical durability, multilayered cellular organization, and physiological resilience post-transplantation. Ongoing research continues to address these limitations and enhance clinical applicability. Therefore, this review aims to examine recent advancements in esophageal tissue engineering, with a focus on key biofabrication techniques, preclinical animal models, and the major translational challenges that must be addressed for successful clinical application.
Collapse
Affiliation(s)
- Jae-Seok Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (J.-S.K.); (E.C.K.)
| | - Hyoryung Nam
- Department of Biomedical Engineering, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea;
| | - Eun Chae Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (J.-S.K.); (E.C.K.)
| | - Hun-Jin Jeong
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168th St., VC12-212A, New York, NY 10032, USA
| | - Seung-Jae Lee
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (J.-S.K.); (E.C.K.)
- Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
- MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
- Advanced Bio-Convergence Research Center, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| |
Collapse
|
2
|
Huang M, Wu Z, Jia L, Wang Y, Gao S, Liu Y, Zhang Y, Li J. Bioinformatics and network pharmacology identify promotional effects and potential mechanisms of ethanol on esophageal squamous cell carcinoma and experimental validation. Toxicol Appl Pharmacol 2023; 474:116615. [PMID: 37406968 DOI: 10.1016/j.taap.2023.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Ethanol is an important risk factor for esophageal squamous cell carcinoma (ESCC); however, the molecular mechanisms behind how ethanol promotes ESCC development remain poorly understood. In this study, ethanol-ESCC-associated target genes were constructed and screened using network pharmacology and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and bioinformatics analysis. A mouse ethanol-exposed esophageal cancer model was constructed with 4-nitroquinoline-1-oxide (4-NQO) to assess its survival and tumor lesion status, and the mechanism of ethanol-promoted ESCC lesions was verified by qRT-PCR and Western blotting. The results showed that 126 ethanol-ESCC crossover genes were obtained, which were significantly enriched in the PI3K/AKT signaling pathway. Bioinformatics results showed that the target genes TNF, IL6, IL1β and JUN were highly expressed in esophageal tumor samples and positively correlated with tumor proliferation and apoptosis genes, and the genetic information of these genes was mutated to different degrees. Animal model experiments showed that ethanol decreased the survival rate and aggravated the occurrence of esophageal cancer in mice. qRT-PCR showed that ethanol promoted the expression of TNF, IL6, IL1β and JUN mRNA in mouse esophageal tumor tissues, and Western blotting showed that ethanol promoted p-PI3K and p-AKT protein expression in mouse esophageal tumor tissues. In conclusion, ethanol promotes esophageal carcinogenesis by increasing the expression of TNF, IL6, IL1β and JUN and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Jia
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Liu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yushuang Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|