1
|
Le Poulennec T, Dubreuil S, Grynberg M, Chabbert-Buffet N, Sermondade N, Fourati S, Siffroi JP, Héron D, Bachelot A. Ovarian reserve in patients with FMR1 gene premutation and the role of fertility preservation. ANNALES D'ENDOCRINOLOGIE 2024; 85:269-275. [PMID: 38702011 DOI: 10.1016/j.ando.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Women with premutation (PM) of the FMR1 gene may suffer from reduced ovarian reserve or even premature ovarian insufficiency (POI). We studied hormonal and ultrasound ovarian reserve, fertility and fertility preservation outcomes in these patients. PATIENTS AND METHOD Retrospective cohort study of 63 female FMR1 premutation carriers. RESULTS Sixty-three female patients bearing an FMR1 premutation were included. Median age was 30 years [26.5-35]. Median number of CGG triplets was 83 [77.2-92]. Before diagnosis of PM, 19 women (30%) had had in all 35 pregnancies, resulting in 20 births, including 7 affected children. After diagnosis of PM, 17 women (26.1%) had in all 23 pregnancies, at a median age of 34.5 years [32.2-36.0]: 2 after pre-implantation genetic diagnosis, 3 after oocyte donation, 18 spontaneously, and 5 ending in medical termination for fragile X syndrome. Thirty-three patients (52.4%) had POI diagnosis (median age, 30 years [27-34]) with median FSH level 84 IU/L [50.5-110] and median AMH level 0.08ng/mL [0.01-0.19]. After POI diagnosis, 8 women had in all 9 pregnancies: 3 following oocyte donation, and 6 spontaneous in 5 women (15.1%). Eight of the 9 pregnancies resulted in a live birth (including 2 affected children) and 1 in medical termination for trisomy 13. The median age of the 30 patients without POI was 31 years [25.2-35.0]. Thirteen women (20.6%) underwent fertility preservation, at a median age of 29 years [24-33]: FSH 7.7 IU/L [6.8-9.9], AMH 1.1ng/mL [0.95-2.1], antral follicle count 9.5 [7.7-14.7]. A median 15 oocytes [10-26] were cryopreserved in a median 2 cycles [1-3]. At the time of writing, no oocytes had yet been thawed for in-vitro fertilization. CONCLUSIONS This study shows the importance of early fertility preservation after diagnosis of FMR1 premutation in women, due to early deterioration of ovarian reserve. Genetic counseling is essential in these patients, as spontaneous pregnancies are not uncommon, even in cases of impaired ovarian reserve, and can lead to birth of affected children.
Collapse
Affiliation(s)
- Tiphaine Le Poulennec
- Departement of Endocrinology and Reproductive Medicine, centre de référence des maladies endocriniennes rares de la croissance et du développement, centre de référence des pathologies gynécologiques rares, IE3M, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Sorbonne université médecine, Paris, France; Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Sophie Dubreuil
- Departement of Endocrinology and Reproductive Medicine, centre de référence des maladies endocriniennes rares de la croissance et du développement, centre de référence des pathologies gynécologiques rares, IE3M, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Sorbonne université médecine, Paris, France; Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Michael Grynberg
- Departement of Reproductive Medicine Clamart, hôpital Béclère, AP-HP, France; Hôpital Béclère, 157, rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Nathalie Chabbert-Buffet
- Departement of Obstetrics Gynecology and Reproductive Medicine, hôpital Tenon, AP-HP, Sorbonne université médecine, Paris, France; Hôpital Tenon, 4, rue de la Chine, 75020 Paris, France
| | - Nathalie Sermondade
- Hôpital Tenon, 4, rue de la Chine, 75020 Paris, France; Departement of Reproductive Biology, hôpital Tenon, AP-HP, Sorbonne université médecine, Paris, France
| | - Salma Fourati
- Sorbonne université médecine, Paris, France; Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France; Departement of Endocrine Biochemistry and oncology, hôpital Pitié-Salpêtrière-Charles-Foix, AP-HP, Paris, France
| | - Jean-Pierre Siffroi
- Genetics Departement, Inserm UMR_S_933, hôpital Armand-Trousseau, AP-HP, Paris, France; Hôpital Armand-Trousseau, 26, avenue du Dr Arnold-Netter, 75012 Paris, France
| | - Delphine Héron
- Genetics Department, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Anne Bachelot
- Departement of Endocrinology and Reproductive Medicine, centre de référence des maladies endocriniennes rares de la croissance et du développement, centre de référence des pathologies gynécologiques rares, IE3M, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Sorbonne université médecine, Paris, France; Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
2
|
Jin X, Zeng W, Xu Y, Jin P, Dong M. Cytosine-guanine-guanine repeats of FMR1 gene negatively affect ovarian reserve and response in Chinese women. Reprod Biomed Online 2024; 49:103779. [PMID: 38678742 DOI: 10.1016/j.rbmo.2023.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 05/01/2024]
Abstract
RESEARCH QUESTION Do cytosine-guanine-guanine (CGG) repeats of the FMR1 gene affect ovarian function, ovarian response and assisted reproductive technology (ART) outcomes in Chinese women? DESIGN A retrospective cohort study of 5869 women who underwent 8932 ART cycles at Women's Hospital, School of Medicine, Zhejiang University between January 2018 and June 2021. Basic hormone level, oocyte yield, embryo quality and the rate of live birth were considered as main outcome measures to evaluate the effects of CGG repeats on ovarian function, ovarian response and ART outcomes. RESULTS The CGG repeats were negatively related to serum anti-Müllerian hormone (AMH), oestradiol, antral follicle count (AFC) and oocyte yield. A significant association was found between serum AMH, oestradiol and AFC even after age was controlled for. No statistically significant association, however, was found between CGG repeats and embryo quality or live birth rate. Ovarian function mediated the association between CGG repeats and ovarian response. CONCLUSION Increased CGG repeats on the FMR1 gene were associated with diminished ovarian function and poor ovarian response, and ovarian function played an intermediary role in the relationship between CGG repeats and ovarian response.
Collapse
Affiliation(s)
- Xinyang Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenshan Zeng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China.
| |
Collapse
|
4
|
Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H, Yang X. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol 2016; 95:247-252. [PMID: 27925481 DOI: 10.1139/cjpp-2016-0515] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondrial reactive oxygen species (mtROS) are signaling molecules, which drive inflammatory cytokine production and T cell activation. In addition, cardiovascular diseases, cancers, and autoimmune diseases all share a common feature of increased mtROS level. Both mtROS and ATP are produced as a result of electron transport chain activity, but it remains enigmatic whether mtROS could be generated independently from ATP synthesis. A recent study shed light on this important question and found that, during endothelial cell (EC) activation, mtROS could be upregulated in a proton leak-coupled, but ATP synthesis-uncoupled manner. As a result, EC could upregulate mtROS production for physiological EC activation without compromising mitochondrial membrane potential and ATP generation, and consequently without causing mitochondrial damage and EC death. Thus, a novel pathophysiological role of proton leak in driving mtROS production was uncovered for low grade EC activation, patrolling immunosurveillance cell trans-endothelial migration and other signaling events without compromising cellular survival. This new working model explains how mtROS could be increasingly generated independently from ATP synthesis and endothelial damage or death. Mapping the connections among mitochondrial metabolism, physiological EC activation, patrolling cell migration, and pathological inflammation is significant towards the development of novel therapies for inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Xinyuan Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kylie Chan
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Muriel Lavallee
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Tracy Gao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|