1
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
2
|
Wronska A. The Role of microRNA in the Development, Diagnosis, and Treatment of Cardiovascular Disease: Recent Developments. J Pharmacol Exp Ther 2023; 384:123-132. [PMID: 35779862 DOI: 10.1124/jpet.121.001152] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/13/2023] Open
Abstract
Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of many crucial cellular processes, and their dysregulation have been shown to contribute to multiple pathologic conditions, including cardiovascular disease (CVD). miRNAs have been found to regulate the expression of various genes involved in cardiac development and function and in the development and progression of CVD. Many miRNAs are master regulators fine-tuning the expression of multiple, often interrelated, genes involved in inflammation, apoptosis, fibrosis, senescence, and other processes crucial for the development of different forms of CVD. This article presents a review of recent developments in our understanding of the role of miRNAs in the development of CVD and surveys their potential applicability as therapeutic targets and biomarkers to facilitate CVD diagnosis, prognosis, and treatment. There are currently multiple potential miRNA-based therapeutic agents in different stages of development, which can be grouped into two classes: miRNA mimics (replicating the sequence and activity of their corresponding miRNAs) and antagomiRs (antisense inhibitors of specific miRNAs). However, in spite of promising preliminary data and our ever-increasing knowledge about the mechanisms of action of specific miRNAs, miRNA-based therapeutics and biomarkers have yet to be approved for clinical applications. SIGNIFICANCE STATEMENT: Over the last few years microRNAs have emerged as crucial, specific regulators of the cardiovascular system and in the development of cardiovascular disease, by posttranscriptional regulation of their target genes. The minireview presents the most recent developments in this area of research, including the progress in diagnostic and therapeutic applications of microRNAs. microRNAs seem very promising candidates for biomarkers and therapeutic agents, although some challenges, such as efficient delivery and unwanted effects, need to be resolved.
Collapse
Affiliation(s)
- Anetta Wronska
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
3
|
microRNAs Associated with Carotid Plaque Development and Vulnerability: The Clinician's Perspective. Int J Mol Sci 2022; 23:ijms232415645. [PMID: 36555285 PMCID: PMC9779323 DOI: 10.3390/ijms232415645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke (IS) related to atherosclerosis of large arteries is one of the leading causes of mortality and disability in developed countries. Atherosclerotic internal carotid artery stenosis (ICAS) contributes to 20% of all cerebral ischemia cases. Nowadays, atherosclerosis prevention and treatment measures aim at controlling the atherosclerosis risk factors, or at the interventional (surgical or endovascular) management of mature occlusive lesions. There is a definite lack of the established circulating biomarkers which, once modulated, could prevent development of atherosclerosis, and consequently prevent the carotid-artery-related IS. Recent studies emphasize that microRNA (miRNA) are the emerging particles that could potentially play a pivotal role in this approach. There are some research studies on the association between the expression of small non-coding microRNAs with a carotid plaque development and vulnerability. However, the data remain inconsistent. In addition, all major studies on carotid atherosclerotic plaque were conducted on cell culture or animal models; very few were conducted on humans, whereas the accumulating evidence demonstrates that it cannot be automatically extrapolated to processes in humans. Therefore, this paper aims to review the current knowledge on how miRNA participate in the process of carotid plaque formation and rupture, as well as stroke occurrence. We discuss potential target miRNA that could be used as a prognostic or therapeutic tool.
Collapse
|
4
|
Teixeira AR, Ferreira VV, Pereira-da-Silva T, Ferreira RC. The role of miRNAs in the diagnosis of stable atherosclerosis of different arterial territories: A critical review. Front Cardiovasc Med 2022; 9:1040971. [PMID: 36505351 PMCID: PMC9733725 DOI: 10.3389/fcvm.2022.1040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerotic disease is a major cause of morbidity and mortality worldwide. Atherosclerosis may be present in different arterial territories and as a single- or multi-territorial disease. The different phenotypes of atherosclerosis are attributable only in part to acquired cardiovascular risk factors and genetic Mendelian inheritance. miRNAs, which regulate the gene expression at the post-transcriptional level, may also contribute to such heterogeneity. Numerous miRNAs participate in the pathophysiology of atherosclerosis by modulating endothelial function, smooth vascular cell function, vascular inflammation, and cholesterol homeostasis in the vessel, among other biological processes. Moreover, miRNAs are present in peripheral blood with high stability and have the potential to be used as non-invasive biomarkers for the diagnosis of atherosclerosis. However, the circulating miRNA profile may vary according to the involved arterial territory, considering that atherosclerosis expression, including the associated molecular phenotype, varies according to the affected arterial territory. In this review, we discuss the specific circulating miRNA profiles associated with atherosclerosis of different arterial territories, the common circulating miRNA profile of stable atherosclerosis irrespective of the involved arterial territory, and the circulating miRNA signature of multi-territorial atherosclerosis. miRNAs may consist of a simple non-invasive method for discriminating atherosclerosis of different arterial sites. The limitations of miRNA profiling for such clinical application are also discussed.
Collapse
Affiliation(s)
- Ana Rita Teixeira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- *Correspondence: Ana Rita Teixeira
| | - Vera Vaz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
5
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
6
|
Paul S, Ruiz-Manriquez LM, Ambriz-Gonzalez H, Medina-Gomez D, Valenzuela-Coronado E, Moreno-Gomez P, Pathak S, Chakraborty S, Srivastava A. Impact of smoking-induced dysregulated human miRNAs in chronic disease development and their potential use in prognostic and therapeutic purposes. J Biochem Mol Toxicol 2022; 36:e23134. [PMID: 35695328 DOI: 10.1002/jbt.23134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/20/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNA molecules with a significant ability to regulate gene expression at the posttranscriptional level either through translation repression or messenger RNA degradation. miRNAs are differentially expressed in various pathophysiological conditions, affecting the course of the disease by modulating several critical target genes. As the persistence of irreversible molecular changes caused by cigarette smoking is central to the pathogenesis of various chronic diseases, several studies have shown its direct correlation with the dysregulation of different miRNAs, affecting numerous essential biological processes. This review provides an insight into the current status of smoking-induced miRNAs dysregulation in chronic diseases such as COPD, atherosclerosis, pulmonary hypertension, and different cancers and explores the diagnostic/prognostic potential of miRNA-based biomarkers and their efficacy as therapeutic targets.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Hector Ambriz-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Estefania Valenzuela-Coronado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Paloma Moreno-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Correlation between decreased plasma miR-29a and vascular endothelial injury induced by hyperlipidemia. Herz 2022:10.1007/s00059-022-05121-x. [PMID: 35674773 DOI: 10.1007/s00059-022-05121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Hyperlipidemia is a major risk factor for vascular endothelial injury and atherosclerosis leading to cardiovascular diseases. Early diagnosis of vascular endothelial injury is important for the prevention and prognosis of cardiovascular diseases. This study aimed to investigate sensitive circulating microRNA (miRNA) as a potential diagnostic biomarker of vascular endothelial injury in a hyperlipidemic rat model. METHODS The miRNA expression profile was detected by miRNA microarray. The hyperlipidemic rat model was established by intraperitoneal injection of vitamin D3 combined with a high-fat diet. Plasma miRNA levels were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS No significant difference was found in the types of highly expressed miRNAs between human umbilical artery endothelial cells (HUAEC) and human umbilical vein endothelial cells (HUVEC). A total of 10 highly expressed miRNAs in endothelial cells were selected as candidate miRNAs, including miR-21, miR-126, let-7a, miR-23a, miR-221, miR-125b, miR-26a, miR-29a, miR-16, and miR-100. The plasma levels of let-7a, miR-126, miR-21, and miR-26a were significantly elevated in hyperlipidemic rats at 30 and 50 days after modeling, while the plasma level of miR-29a was significantly decreased. No significant change was found in the plasma levels of miR-125b, miR-23a, miR-221, miR-100, and miR-16. Interestingly, a significant reduction in plasma miR-29 level was detected as early as 20 days after modeling, which was earlier than for soluble intercellular adhesion molecule‑1 (sICAM-1). CONCLUSION The plasma levels of endothelial cell-enriched miRNAs were correlated with vascular endothelial injury induced by hyperlipidemia. miR-29a might serve as a potential early diagnostic biomarker of endothelial injury-related diseases.
Collapse
|
8
|
Fazmin IT, Achercouk Z, Edling CE, Said A, Jeevaratnam K. Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules 2020; 10:E1354. [PMID: 32977454 PMCID: PMC7598281 DOI: 10.3390/biom10101354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of sudden cardiac death in adults, and new methods of predicting disease and risk-stratifying patients will help guide intervention in order to reduce this burden. Current CAD detection involves multiple modalities, but the consideration of other biomarkers will help improve reliability. The aim of this narrative review is to help researchers and clinicians appreciate the growing relevance of miRNA in CAD and its potential as a biomarker, and also to suggest useful miRNA that may be targets for future study. We sourced information from several databases, namely PubMed, Scopus, and Google Scholar, when collating evidentiary information. MicroRNAs (miRNA) are short, noncoding RNAs that are relevant in cardiovascular physiology and pathophysiology, playing roles in cardiac hypertrophy, maintenance of vascular tone, and responses to vascular injury. CAD is associated with changes in miRNA expression profiles, and so are its risk factors, such as abnormal lipid metabolism and inflammation. Thus, they may potentially be biomarkers of CAD. Nevertheless, there are limitations in using miRNA. These include cost and the presence of several confounding factors that may affect miRNA profiles. Furthermore, there is difficulty in the normalisation of miRNA values between published studies, due to pre-analytical variations in samples.
Collapse
Affiliation(s)
- Ibrahim T. Fazmin
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Zakaria Achercouk
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Charlotte E. Edling
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Asri Said
- School of Medicine, University Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| |
Collapse
|
9
|
Vascular Inflammation Is a Risk Factor Associated with Brain Atrophy and Disease Severity in Parkinson's Disease: A Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2591248. [PMID: 32733633 PMCID: PMC7376437 DOI: 10.1155/2020/2591248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Introduction Systemic inflammation with elevated oxidative stress causing neuroinflammation is considered a major factor in the pathogenesis of Parkinson's disease (PD). The interface between systemic circulation and the brain parenchyma is the blood-brain barrier (BBB), which also plays a role in maintaining neurovascular homeostasis. Vascular cell adhesion molecule-1 (VCAM-1) and microRNAs (miRNAs) regulate brain vessel endothelial function, neoangiogenesis, and, in turn, neuronal homeostasis regulation, such that their dysregulation can result in neurodegeneration, such as gray matter atrophy, in PD. Objective Our aim was to evaluate the associations among specific levels of gray matter atrophy, peripheral vascular adhesion molecules, miRNAs, and clinical disease severity in order to achieve a clearer understanding of PD pathogenesis. Methods Blood samples were collected from 33 patients with PD and 27 healthy volunteers, and the levels of VCAM-1 and several miRNAs in those samples were measured. Voxel-based morphometry (VBM) analysis was performed using 3 T magnetic resonance imaging (MRI) and SPM (Statistical Parametric Mapping software program). The associations among the vascular parameter, miRNAs, gray matter volume, and clinical disease severity measurements were evaluated by partial correlation analysis. Results The levels of VCAM-1, miRNA-22, and miRNA-29a expression were significantly elevated in the PD patients. The gray matter volume atrophy in the left parahippocampus, bilateral posterior cingulate gyrus, fusiform gyrus, left temporal gyrus, and cerebellum was significantly correlated with increased clinical disease severity, the upregulation of miRNA levels, and increased vascular inflammation. Conclusion Patients with PD seem to have abnormal levels of vascular inflammatory markers and miRNAs in the peripheral circulation, and these levels are correlated with specific brain volume changes. This study reinforces the associations among peripheral inflammation, the BBB interface, and gray matter atrophy in PD and further demonstrates that BBB dysfunction with neurovascular impairment may play an important role in PD progression.
Collapse
|
10
|
Silva DCPD, Carneiro FD, Almeida KCD, Fernandes-Santos C. Role of miRNAs on the Pathophysiology of Cardiovascular Diseases. Arq Bras Cardiol 2019; 111:738-746. [PMID: 30484515 PMCID: PMC6248252 DOI: 10.5935/abc.20180215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MiRNA (or microRNA) is a subclass of non-coding RNAs that is responsible for
post-transcriptional gene regulation. It has approximately 22 nucleotides and
regulates gene expression in plants and animals at the post-transcriptional
level, by the cleavage of a target mRNA or by suppression of its translation.
Although many of the processes and mechanisms have not yet been fully
elucidated, there is a strong association between miRNA expression and several
diseases. It is known that miRNAs are expressed in the cardiovascular system,
but their role in cardiovascular diseases (CVDs) has not been clearly
established. In this non-systematic review of the literature, we first present
the definition of miRNAs and their action at the cellular level. Afterward, we
discuss the role of miRNAs as circulating biomarkers of CVDs, and then their
role in cardiac remodeling and atherosclerosis. Despite the complexity and
challenges, it is crucial to identify deregulated miRNAs in CVDs, as it allows a
better understanding of underlying cellular and molecular mechanisms and helps
in the development of more accurate diagnostic and prognostic circulating
biomarkers, and new therapeutic strategies for different stages of CVDs.
Collapse
Affiliation(s)
| | - Felipe Demani Carneiro
- Programa de Pós-graduação em Ciências Cardiovasculares da Universidade Federal Fluminense (UFF), Niterói, RJ - Brazil
| | | | - Caroline Fernandes-Santos
- Programa de Pós-graduação em Ciências Cardiovasculares da Universidade Federal Fluminense (UFF), Niterói, RJ - Brazil
| |
Collapse
|
11
|
Huang YM, Li WW, Wu J, Han M, Li BH. The diagnostic value of circulating microRNAs in heart failure. Exp Ther Med 2019; 17:1985-2003. [PMID: 30783473 PMCID: PMC6364251 DOI: 10.3892/etm.2019.7177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome, characterized by inadequate blood perfusion of tissues and organs caused by decreased heart ejection capacity resulting from structural or functional cardiac disorders. HF is the most severe heart condition and it severely compromises human health; thus, its early diagnosis and effective management are crucial. However, given the lack of satisfactory sensitivity and specificity of the currently available biomarkers, the majority of patients with HF are not diagnosed early and do not receive timely treatment. A number of studies have demonstrated that peripheral blood circulating nucleic acids [such as microRNAs (miRs), mRNA and DNA] are important for the diagnosis and monitoring of treatment response in HF. miRs have been attracting increasing attention as promising biomarkers, given their presence in body fluids and relative structural stability under diverse conditions of sampling. The aim of the present review was to analyze the associations between the mechanisms underlying the development of HF and the expression of miRs, and discuss the value of using circulating miRs as diagnostic biomarkers in HF management. In particular, miR-155, miR-22 and miR-133 appear to be promising for the diagnosis, prognosis and management of HF patients.
Collapse
Affiliation(s)
- Yao-Meng Huang
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Wei-Wei Li
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun Wu
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mei Han
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bing-Hui Li
- Department of Oncological Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
12
|
Jian D, Dai B, Hu X, Yao Q, Zheng C, Zhu J. ox-LDL increases microRNA-29a transcription through upregulating YY1 and STAT1 in macrophages. Cell Biol Int 2017; 41:1001-1011. [PMID: 28593745 DOI: 10.1002/cbin.10803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/04/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Dongdong Jian
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Bing Dai
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Xiaotong Hu
- Department of Intensive Care Unit; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Qiang Yao
- Department of Cardiology; Hangzhou Red Cross Hospital; Hangzhou Zhejiang 310003 P.R. China
| | - Chengfei Zheng
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| | - Jianhua Zhu
- Department of Cardiology; The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou Zhejiang 310003 P.R. China
| |
Collapse
|