1
|
Pali D, Forčić D, Jagušić M, Košutić Gulija T, Jurković M, Babić M, Kalafatovic D, Ivančić-Jelečki J. Early evolution of mumps-HCV chimeric viruses in Vero cells induces loss of HCV gene expression and promotes accumulation of substitutions uncharacteristic of mumps strains. Virology 2025; 603:110379. [PMID: 39733517 DOI: 10.1016/j.virol.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Affiliation(s)
- Dorotea Pali
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Dubravko Forčić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Maja Jagušić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Tanja Košutić Gulija
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Mirna Jurković
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| | - Marko Babić
- University of Rijeka, Faculty of Biotechnology and Drug Development, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Daniela Kalafatovic
- University of Rijeka, Faculty of Biotechnology and Drug Development, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Jelena Ivančić-Jelečki
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
de Souza TLF, de Lima SMB, Braga VLDA, Peabody DS, Ferreira DF, Bianconi ML, Gomes AMDO, Silva JL, de Oliveira AC. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein. PeerJ 2016; 4:e2670. [PMID: 27867765 PMCID: PMC5111903 DOI: 10.7717/peerj.2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. METHODS Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. RESULTS The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. DISCUSSION Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.
Collapse
Affiliation(s)
- Theo Luiz Ferraz de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa L. de Azevedo Braga
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, United States
| | - Davis Fernandes Ferreira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Lucia Bianconi
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco de Oliveira Gomes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Kanwal S, Mahmood T. Hepatitis C viral heterogeneity based on core gene and an attempt to design small interfering RNA against strains resistant to interferon in rawalpindi, pakistan. HEPATITIS MONTHLY 2012; 12:398-407. [PMID: 22879830 PMCID: PMC3412557 DOI: 10.5812/hepatmon.6184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/19/2012] [Accepted: 05/22/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Global prevalence of Hepatitis C Virus (HCV) infection corresponds to about 130 million HCV positive patients worldwide. The only drug that effectively reduces viral load is interferon-α (IFN-α) and currently combination of IFN and ribavirin is the choice for treatment. OBJECTIVES The present study is aimed to resolve the genotypes based on core gene that might affect the response to interferon therapy. Furthermore an attempt was made to propose a powerful therapeutic approach by designing the siRNA from sequences of the same patients who remain resistant to IFN in this study. PATIENTS AND METHODS To achieve the objectives, a sequence analysis was performed in five HCV ELISA positive subjects who have completed IFN treatment. Neighbor Joining (NJ) method was used to study the evolutionary relationship. Atomic models were predicted using online software PROCHECK and i- TASSER. RESULTS Two new genotypes were reported for the first time namely 4a from suburban region of Rawalpindi and 6e from all over the Pakistan. According to Ramachandran plot, satisfactory atomic model was considered useful for further studies, i.e. to calculate HCV genotypes conservation at structural level, to find out critical binding sites for drug designing, or to silence those binding sites by using appropriate siRNA. Single siRNA can be used to inhibit HCV RNA synthesis against genotype 3 and 4, as the predicted siRNA were originated from the same domain in studied HCV core region in both genotypes. CONCLUSIONS We can conclude that any change or mutation in core region might be the cause of HCV strains to resist against IFN therapy. Therefore, further understanding of the complex mechanism involved in disrupting viral response to therapy would facilitate the development of more effective therapeutic regimens. Additionally, a single designed siRNA can be used as an alternative for current therapy against more than one resistant HCV genotypes.
Collapse
Affiliation(s)
- Sobia Kanwal
- Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tariq Mahmood
- Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Corresponding author: Tariq Mahmood, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Tel.: +92-5190643144, Fax: +92-512601059, E-mail:
| |
Collapse
|
4
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [PMID: 21292033 DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|
5
|
Khaliq S, Jahan S, Ijaz B, Ahmad W, Asad S, Pervaiz A, Samreen B, Khan M, Hassan S. Inhibition of core gene of HCV 3a genotype using synthetic and vector derived siRNAs. Virol J 2010; 7:318. [PMID: 21073745 PMCID: PMC2992066 DOI: 10.1186/1743-422x-7-318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/13/2010] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis C virus (HCV) is a major causative agent of liver associated diseases throughout the world, with genotype 3a responsible for most of the cases in Pakistan. Due to the limited efficiency of current therapy, RNA interference (RNAi) a novel regulatory and powerful silencing approach for molecular therapeutics through a sequence-specific RNA degradation process represents an alternative option. Results The current study was purposed to assess and explore the possibility of RNAi to silence the HCV-3a Core gene expression, which play complex role in regulation of cell growth and host genes expression essential for infectivity and disease progression. To identify the potent siRNA target sites, 5 small interfering RNAs (siRNAs) against Core gene were designed and in vitro transcribed after consensus sequence analysis of different HCV-3a isolates. Antiviral effects of siRNAs showed upto 80% inhibition of Core gene expression by different siRNAs into Huh-7 cells as compared with Mock transfected and control siRNAs treated cells. For long lasting effect of siRNAs, vector based short hairpin siRNAs (shRNAs) were designed and tested against HCV-3a Core which resulted in a similar pattern of inhibition on RNA and protein expression of HCV Core as synthetic siRNAs. Furthermore, the efficacy of cell culture tested siRNA and shRNA, were evaluated for inhibition of HCV replication in HCV infected serum inoculated Huh-7 cells and a significant decrease in HCV viral copy number was observed. Conclusions Our results support the possibility of using consensus siRNA and shRNA-based molecular therapy as a promising strategy in effective inhibition of HCV-3a genotype.
Collapse
Affiliation(s)
- Saba Khaliq
- Applied and Functional Genomics Laboratory, National Center of Excellence in Molecular Biology, University of Punjab, Lahore 53700, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yan XB, Chen Z, Brechot C. Associations among Genotype 1b Hepatitis C Virus Core Protein, Protein Kinase R, and Signal Transducer and Activator of Transcription 3. HEPATITIS MONTHLY 2010; 10:275-84. [PMID: 22312393 PMCID: PMC3271320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 07/22/2010] [Accepted: 09/17/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Because hepatitis C virus (HCV) core protein (Core), protein kinase R (PKR), and signal transducer and activator of transcription 3 (STAT3) all play relevant roles in the pathogenesis of HCV, persistent infection and hepatocellular carcinoma (HCC) and PKR may interact with HCV Core. In this study, we further investigate the associations among HCV Core, PKR, and STAT3 and the mechanisms involved in these interactions. MATERIALS AND METHODS Expression levels of HCV Core, PKR, eukaryotic initiation factor 2 (eIF-2α), phosphorylated eIF- 2α (p-eIF-2α), STAT3, and phosphorylated-STAT3 (p-STAT3) were compared between Huh-7 and replicon cell-Huh-7 cells harboring the full length of genotype 1b HCV genomes. Co-immunoprecipitation and glutathione S-transferase (GST) pull-down assay were conducted for HCV Core, PKR, and STAT3. RESULTS HCV may have induced the expression of STAT3 and the activity of PKR (p-eIF-2α). HCV Core, STAT3, and PKR appear to have interacted with one another. The N-terminal 1-126 amino acid (aa) of HCV Core contributed to an interaction between HCV Core and STAT3, and only full-length PKR bound to STAT3 and p-STAT3. CONCLUSIONS These findings suggest that HCV Core, PKR, and STAT3 can interact with each other. Specifically, HCV Core may play its role through both PKR and STAT3. Alternatively, HCV Core's binding to and activation of STAT3 might be due to the interaction between HCV Core and PKR. The distinct interactions among these three molecules are important and may reveal a new molecular mechanism in the pathogenesis of HCV-persistent infection and HCV-related HCC.
Collapse
Affiliation(s)
- Xue bing Yan
- Department of Infectious Diseases, The First Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China,Corresponding author at: Dr. Xue-bing Yan, Department of Infectious Diseases, The First Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China. Tel.: +51-685802180, Fax: +51-685802180, E-mail:
| | - Zhi Chen
- Institute of Infectious Diseases, the First Affiliated Hospital, College of Medical Science, Key Laboratory of Ministry Health, Zhejian
| | | |
Collapse
|