1
|
Philippi H, Sommerfeld V, Monteiro A, Rodehutscord M, Olukosi OA. Bone characteristics, pre-caecal phytate degradation, mineral digestibility and tissue expression were marginally affected by zinc level and source in phytase-supplemented diets in 21-day-old broiler chickens. Br Poult Sci 2024; 65:331-341. [PMID: 38393942 DOI: 10.1080/00071668.2024.2311290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
1. This study determined the effect of dietary Zn concentration and source in phytase-supplemented diets on bone mineralisation, gastrointestinal phytate breakdown, mRNA-level gene expression (in jejunum, liver and Pectoralis major muscle) and growth performance in broiler chickens.2. Male Cobb 500 broilers were housed in floor pens (d 0-d 21) to test seven treatments with six replicate pens (12 birds per pen). Diets were arranged in a 2 × 3 + 1-factorial arrangement. The experimental factors were Zn source (Zn-oxide (ZnO) or Zn-glycinate (ZnGly) and Zn supplementation level (10, 30 or 50 mg/kg of diet). A maize-soybean meal-based diet without supplementation and formulated to contain 28 mg Zn/kg (analysed to be 35 mg Zn/kg), served as a control.3. Zinc source and level did not influence (p > 0.05) bone ash concentration and quantity or mineral concentrations in bone ash. Tibia thickness was greater in the treatment ZnO10 than in the treatments ZnO30 and ZnGly50 (Zn level × Zn source: p = 0.036), but width and breaking strength were not affected.4. Pre-caecal P digestibility and concentrations of phytate breakdown products in the ileum, except for InsP5, were not affected by Zn source or level. Only the expression of EIF4EBP1 (eukaryotic translation initiation factor 4E-binding protein 1) and FBXO32 (F-box only protein 32) in Pectoralis major muscle was affected by source, where expression was increased in ZnO compared to ZnGly diets (p < 0.05).5. In conclusion, Zn level and source did not affect gastrointestinal phytate degradation and bone mineralisation in phytase-supplemented diets. The intrinsic Zn concentration appeared to be sufficient for maximum bone Zn deposition under the conditions of the present study but requires validation in longer-term trials.
Collapse
Affiliation(s)
- H Philippi
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - V Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - M Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - O A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Philippi H, Sommerfeld V, Olukosi OA, Windisch W, Monteiro A, Rodehutscord M. Effect of dietary zinc source, zinc concentration, and exogenous phytase on intestinal phytate degradation products, bone mineralization, and zinc status of broiler chickens. Poult Sci 2023; 102:103160. [PMID: 37856908 PMCID: PMC10591006 DOI: 10.1016/j.psj.2023.103160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to determine the effect of Zn source and dietary level on intestinal myo-inositol hexakisphosphate (InsP6) disappearance, intestinal accumulation of lower InsP and myo-inositol (MI), prececal mineral digestibility, bone mineralization, and Zn status of broilers without and with exogenous phytase in the feed. Male Ross 308 broilers were allocated in groups of 10 to 8 treatments with 8 pens each. Experimental diets were fed from d 7 to d 28 and contained 33 mg/kg dry matter plant-intrinsic Zn. Experimental factors were phytase supplementation (0 or 750 FTU/kg) and Zn source (none [0 mg/kg Zn], Zn-sulfate [30 mg/kg Zn], Zn-oxide [30 mg/kg Zn]). Additional treatments with 90 mg/kg Zn as Zn-sulfate or Zn-oxide and phytase were included to test the effect of Zn level. No Zn source or Zn level effects were observed for ADG, feed conversion ratio, prececal P digestibility, intestinal InsP6 disappearance, and bone ash concentration. However, those measurements were increased by exogenous phytase (P < 0.001), except the feed conversion ratio, which was decreased (P < 0.001). Ileal MI concentrations were affected by phytase × Zn source interaction (P < 0.030). Birds receiving exogenous phytase and Zn supplementation had the highest MI concentrations regardless of exogenous Zn source, whereas MI concentrations were intermediate for birds receiving exogenous phytase only. Exogenous phytase and exogenous Zn source increased the Zn concentration in bone and blood of broilers (P < 0.001). In conclusion, measures of exogenous phytase efficacy were not affected by phytase × Zn source interaction. Further studies are needed to rule out an effect from Zn sources other than those tested in this study and to investigate the effect of Zn supplementation on endogenous phosphatases. The missing effect of increasing Zn supplementation from 30 to 90 mg/kg in phytase-supplemented diets gives reason to reconsider the Zn supplementation level used by the industry.
Collapse
Affiliation(s)
- Hanna Philippi
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Wilhelm Windisch
- Chair of Animal Nutrition, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | | | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany.
| |
Collapse
|
3
|
Shurson GC, Urriola PE, Hung YT. Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals (Basel) 2022; 12:3374. [PMID: 36496895 PMCID: PMC9739216 DOI: 10.3390/ani12233374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The objectives of this review were to summarize current knowledge of Zn in swine nutrition, environmental concerns, potential contribution to antimicrobial resistance, and explore the use of alternative feeding strategies to reduce Zn excretion in manure while capturing improvements in productivity. Zinc is a required nutrient for pigs but is commonly supplemented at concentrations that greatly exceed estimated requirements. Feeding pharmacological concentrations of Zn from ZnO to pigs for 1 to 2 weeks post-weaning reduces post-weaning diarrhea and improves growth performance. Feeding elevated dietary levels of Zn to sows during the last 30 days of gestation can reduce the incidence of low-birth-weight pigs and pre-weaning mortality. Most of the dietary Zn consumed by pigs is not retained in the body and is subsequently excreted in manure, which led several countries to impose regulations restricting dietary Zn concentrations to reduce environmental impacts. Although restricting Zn supplementation in swine diets is a reasonable approach for reducing environmental pollution, it does not allow capturing health and productivity benefits from strategic use of elevated dietary Zn concentrations. Therefore, we propose feeding strategies that allow strategic use of high dietary concentrations of Zn while also reducing Zn excretion in manure compared with current feeding practices.
Collapse
Affiliation(s)
- Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
4
|
Nielsen TS, Engelsmann MN, Hansen SV, Maribo H. Bioavailability of Different Zinc Sources in Pigs 0-3 Weeks Post-Weaning. Animals (Basel) 2022; 12:2921. [PMID: 36359046 PMCID: PMC9655132 DOI: 10.3390/ani12212921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
The bioavailability of dietary zinc (Zn) in pigs may differ according to the Zn source and is affected by other components in the diet. The aim was to determine the biomarkers of Zn bioavailability (apparent total tract digestibility of Zn and serum Zn status) following six different sources of added Zn and their effect on the performance and faecal consistency score in piglets 0-3 weeks after weaning on day 28. The sources of Zn were Zn oxide (ZnO), Zn sulfate (ZnSO4), porous ZnO, Zn-glycinate, amino acid-bound Zn and hydroxy covalent-bound Zn added at 100 mg/kg (ZnO and ZnSO4 also added at 1000 mg/kg), in a total of eight treatments (n = 12/treatment). Pigs were individually housed, and titanium dioxide was included as an indigestible marker in the feed. The digestibility of Zn on day 14 post-weaning was negative for all six Zn sources at 100 mg Zn/kg, indicating insufficient Zn supply. The digestibility of Zn differed according to the Zn source, but the digestibility of Zn from ZnO and ZnSO4 did not differ between processed inorganic or chelated organic sources of Zn. However, the differences in Zn digestibility between Zn sources were not reflected as differences in the serum Zn status, feed intake, gain or probability of diarrhoea.
Collapse
Affiliation(s)
- Tina S. Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Maiken N. Engelsmann
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Sally V. Hansen
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - Hanne Maribo
- SEGES Innovation P/S, DK-1609 Copenhagen V, Denmark
| |
Collapse
|
5
|
Dietary l-glutamic acid N,N-diacetic acid improves short-term maintenance of zinc homoeostasis in a model of subclinical zinc deficiency in weaned piglets. Br J Nutr 2022. [DOI: 10.1017/s000711452100489x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This study compared the Zn response in selected tissues of weaned piglets fed L-glutamic acid, N,N-diacetic acid (GLDA), while challenged with short-term subclinical Zn deficiency (SZD). During a total experimental period of eight days, 96 piglets were fed restrictively (450 g/d) a high phytate (9 g/kg) diet containing added Zn at 0, 5, 10, 15, 20, 25, 45 and 75 mg/kg with and without 200 mg/kg of GLDA. No animals showed signs of clinical Zn deficiency and no phenotypical differences were observed. Broken line analysis of Zn status parameters such as liver Zn and apparently absorbed Zn indicated that the gross Zn requirement threshold was around 55 mg/kg diet. Supplementation of Zn above this threshold led to a saturation of the response in apparently absorbed Zn and linear increase in liver Zn. Bone and serum Zn responded to the dose in a linear fashion, likely due to the time-frame of Zn homoeostatic adaptation. Inclusion of GLDA into the diets yielded a higher intercept for bone Zn (P < 0·05). Liver Zn accumulation and MT1A gene expression was higher for piglets receiving GLDA (P < 0·05), indicating higher Zn influx. This study indicates that a strong chelator such as GLDA mitigates negative effects of phytate in plant-based diets, by sustaining Zn solubility, thereby improving nutritional Zn availability.
Collapse
|
6
|
Boerboom G, Martín-Tereso J, Veldkamp T, van Harn J, Bikker P, Busink R. Tolerance and safety evaluation of L-glutamic acid, N,N-diacetic acid as a feed additive in broiler diets. Poult Sci 2021; 101:101623. [PMID: 34936962 PMCID: PMC8704469 DOI: 10.1016/j.psj.2021.101623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
The novel chelator, L-glutamic acid, N,N-diacetic acid (GLDA) can be used as a dietary ingredient to safely reduce Zn supplementation in complete feed, without compromising the Zn status of farm animals. The objective of this study was to study dietary tolerance, bioaccumulation, and evaluate the safety of GLDA when supplemented in broiler diets at 0, 100, 300, 1000, 3,000, and 10,000 mg/kg. A total of 480 one-day-old Ross 308 male broilers were randomly allocated to 48 pens and fed one of the 6 experimental diets. Production performance was used to assess tolerance to the additive. At trial end, toxicity was evaluated using hematology, plasma biochemistry (n = 144) and gross necropsy (n = 48). Residue levels of GLDA were assessed in liver, kidney and breast tissue of birds used for necropsy. Performance showed an increase (P < 0.05) in body weight for GLDA inclusion at 300 mg/kg. A decrease on the measured performance parameters was found for the 10,000 mg/kg GLDA inclusion level (P < 0.05). The additive was added as a tetra-sodium salt, leading to sodium levels being 2.5 times higher in the latter treatment compared to the control diet which may have led to impaired intestinal barrier function. Mortality was not different between treatments. Residue levels for GLDA at the highest inclusion indicate that 0.0005% of total GLDA consumption is accumulated in breast tissue. Higher values of GLDA were found in kidney and liver at the highest inclusion level, potentially confirming that the small fraction of GLDA absorbed was readily excreted by the animal. At 100 and 300 mg/kg GLDA inclusion there were negligible amounts of GLDA present in all tissues measured. The present experiment demonstrated a high dietary tolerance to GLDA in broilers and indicated that GLDA does not pose a significant risk to food safety when supplemented below 3,000 mg/kg.
Collapse
Affiliation(s)
- Gavin Boerboom
- Animal Nutrition Group, Wageningen University & Research, Wageningen 6708 WD, the Netherlands; Trouw Nutrition R&D, Amersfoort 3811 MH, the Netherlands.
| | | | - Teun Veldkamp
- Wageningen Livestock Research, Wageningen University and Research, 6708 WD, Wageningen, the Netherlands
| | - Jan van Harn
- Wageningen Livestock Research, Wageningen University and Research, 6708 WD, Wageningen, the Netherlands
| | - Paul Bikker
- Wageningen Livestock Research, Wageningen University and Research, 6708 WD, Wageningen, the Netherlands
| | - Ronald Busink
- Trouw Nutrition R&D, Amersfoort 3811 MH, the Netherlands
| |
Collapse
|
7
|
|
8
|
Boerboom GM, Busink R, Smits CH, Hendriks WH, Martín-Tereso J. Efficacy of l-glutamic acid, N,N-diacetic acid to improve the dietary trace mineral bioavailability in broilers. J Anim Sci 2021; 98:5986720. [PMID: 33205196 PMCID: PMC7846178 DOI: 10.1093/jas/skaa369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Trace minerals are commonly supplemented in the diets of farmed animals in levels exceeding biological requirements, resulting in extensive fecal excretion and environmental losses. Chelation of trace metal supplements with ethylenediaminetetraacetic acid (EDTA) can mitigate the effects of dietary antagonists by preserving the solubility of trace minerals. Lack of EDTA biodegradability, however, is of environmental concern. l-Glutamic acid, N,N-diacetic acid (GLDA) is a readily biodegradable chelating agent that could be used as a suitable alternative to EDTA. The latter was tested in sequential dose–response experiments in broiler chickens. Study 1 compared the effect of EDTA and GLDA in broilers on supplemental zinc availability at three levels of added zinc (5, 10, and 20 ppm) fed alone or in combination with molar amounts of GLDA or EDTA equivalent to chelate the added zinc, including negative (no supplemental zinc) and positive (80 ppm added zinc) control treatments. Study 2 quantified the effect of GLDA on the availability of native trace mineral feed content in a basal diet containing no supplemental minerals and supplemented with three levels of GLDA (54, 108, and 216 ppm). In study 1, serum and tibia Zn clearly responded to the increasing doses of dietary zinc with a significant response to the presence of EDTA and GLDA (P < 0.05). These results are also indicative of the equivalent nutritional properties between GLDA and EDTA. In study 2, zinc levels in serum and tibia were also increased with the addition of GLDA to a basal diet lacking supplemental trace minerals, where serum zinc levels were 60% higher at the 216 ppm inclusion level. Similar to the reported effects of EDTA, these studies demonstrate that dietary GLDA may have enhanced zinc solubility in the gastrointestinal tract and subsequently enhanced availability for absorption, resulting in improved nutritional zinc status in zinc-deficient diets. As such, GLDA can be an effective nutritional tool to reduce supplemental zinc levels in broiler diets, thereby maintaining health and performance while reducing the environmental footprint of food-producing animals.
Collapse
Affiliation(s)
- Gavin M Boerboom
- Trouw Nutrition R&D, Amersfoort, MH, The Netherlands.,Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, WD, The Netherlands
| | - Ronald Busink
- Trouw Nutrition R&D, Amersfoort, MH, The Netherlands
| | - Coen H Smits
- Trouw Nutrition R&D, Amersfoort, MH, The Netherlands
| | - Wouter H Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, WD, The Netherlands
| | | |
Collapse
|
9
|
Liu FF, Azad MAK, Li ZH, Li J, Mo KB, Ni HJ. Zinc Supplementation Forms Influenced Zinc Absorption and Accumulation in Piglets. Animals (Basel) 2020; 11:ani11010036. [PMID: 33375418 PMCID: PMC7824504 DOI: 10.3390/ani11010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
The study aimed at determining the effect of different zinc (Zn) supplementation forms on Zn accumulation, activities of Zn-containing enzymes, gene expression of metallothionein (MT), and Zn transporters in piglets. Eighteen piglets were randomly divided into three groups: (a) a basal diet supplemented with 150 mg/kg Zn from Zn methionine (Zn-Met) in the feed (Zn-Met group), (b) a basal diet supplemented with 150 mg/kg Zn from Zn sulfate (ZnSO4) in the feed (ZnSO4, feed group), and (c) a basal diet supplemented with the same dose of Zn as in ZnSO4,feed group but in water (ZnSO4, water group). The results showed that Zn-Met added in feed and ZnSO4 dissolved in drinking water significantly improved (p < 0.05) the Zn concentration in liver and jejunum and the apparent digestibility of Zn in comparison with the ZnSO4 added in feed. In addition, dietary Zn supplementation as Zn-Met significantly increased (p < 0.05) the activity of alkaline phosphatase (AKP) in the jejunum of piglets in comparison with the ZnSO4, feed group. Furthermore, the Zn-Met and ZnSO4, water groups showed an improved total superoxide dismutase activity (T-SOD) in the ileum as compared to the ZnSO4, feed group. Meanwhile, the qPCR and western blot results showed that Zn-Met and ZnSO4 dissolved in drinking water increased the expression of MT in the jejunum in comparison with the ZnSO4 added in the piglets' feed. However, different Zn supplementation forms had no effect on the mRNA expressions of Zip4 and ZnT1 transporters. In conclusion, Zn-Met added in feed and ZnSO4 dissolved in drinking water had higher bioavailability in piglets.
Collapse
Affiliation(s)
- Fen-Fen Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
| | - Zhi-He Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
| | - Jing Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
- Department of Animal Science, Hunan Agriculture University, Changsha 410125, China
| | - Kai-Bin Mo
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Heng-Jia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
- Correspondence:
| |
Collapse
|
10
|
Boerboom G, Busink R, Smits C, van Harn J, Bikker P. Effect of L-glutamic acid N,N-diacetic acid on the availability of dietary zinc in broiler chickens. Poult Sci 2020; 100:100913. [PMID: 33652535 PMCID: PMC7936176 DOI: 10.1016/j.psj.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/02/2022] Open
Abstract
Chelating agents can be used to improve the nutritional availability of trace minerals within the gastrointestinal tract. This study was conducted to determine the effect of a novel chelating agents, L-glutamic acid N,N-diacetic acid (GLDA), a biodegradable alternative to ethylenediaminetetraacetic acid on the nutritional bioavailability of zinc in broilers. Twelve dietary treatments were allocated to 96 pens in a randomized block design. Pens contained 10 Ross 308 male broilers in a factorial design with 6 incremental zinc levels (40, 45, 50, 60, 80, and 120 ppm of total Zn), with and without inclusion of GLDA (0 and 100 ppm) as respective factors. Experimental diets were supplied from day 7 to 21/22 and serum, liver and tibia Zn content were determined in 3 birds per pen. Growth performance and liver characteristics were not affected by dietary treatments, but both supplemental Zn and GLDA enhanced tibia and serum zinc concentration. The positive effect of GLDA was observed at all levels of the dietary Zn addition. The amount of zinc needed to reach 95% of the asymptotic Zn response was determined using nonlinear regression. When GLDA was included in the diet, based on tibia Zn, the same Zn status was achieved with a 19 ppm smaller Zn dose while based on serum Zn this was 27 ppm less Zn. Dietary GLDA reduces supplemental Zn needs to fulfill nutritional demands as defined by tibia Zn and serum Zn response. Considering the positive effect on the nutritional availability of Zn in broilers, GLDA presents an opportunity as biodegradable additive, to reduce Zn supplementation to livestock and thereby reducing Zn excretion into the environment, while fulfilling the nutrition Zn needs of farmed animals.
Collapse
Affiliation(s)
- Gavin Boerboom
- Wageningen University & Research, Animal Nutrition Group, Wageningen 6708 WD, The Netherlands; Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands.
| | - Ronald Busink
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| | - Coen Smits
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| | - Jan van Harn
- Wageningen University and Research, Wageningen Livestock Research, 6708 WD Wageningen, The Netherlands
| | - Paul Bikker
- Wageningen University and Research, Wageningen Livestock Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|