1
|
Fang F, Jin X, Meng J, He J, Wang J, Wang C, Xie S, Shi W. Jiedu Fuzheng decoction improves the proliferation, migration, invasion and EMT of non-small cell lung cancer via the Wnt/β-catenin pathway. Cell Div 2023; 18:22. [PMID: 38104091 PMCID: PMC10725601 DOI: 10.1186/s13008-023-00105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the effect of Jiedu Fuzheng decoction (JFD) in non-small cell lung cancer (NSCLC) and its potential therapeutic mechanism. RESULTS We prepared JFD-medicated serum from rats and treated NSCLC cells (A549 and NCI-H1650) with 0.5, 1, and 2 mg/mL JFD-medicated serum. CCK-8 and colony formation assays were used to detect cell proliferation. Transwell assays showed that JFD attenuated cell migration and invasion. JFD and SKL2001 (Wnt/β-catenin activator) were simultaneously used to treat NSCLC cells to verify that JFD regulated the biological behavior of NSCLC via Wnt/β-catenin signaling. It was found that 2 mg/mL JFD had the most significant effect on the activity of NSCLC cells. JFD attenuated proliferation and metastasis but increased the proportion of apoptotic cells. At the same time, JFD downregulated N-cadherin, vimentin and β-catenin protein expression in cancer cells. SKL2001 could restore the improvement of JFD on proliferation, metastasis and apoptosis. CONCLUSION This study confirmed that JFD suppressed the occurrence and development of NSCLC by regulating Wnt/β-catenin signaling and provided a novel therapeutic scheme for NSCLC.
Collapse
Affiliation(s)
- Fang Fang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaowei Jin
- Department of Traditional Chinese Medicine, Yunnan Cancer Hospital, Kunming, 650018, Yunnan, People's Republic of China
| | - Jinming Meng
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jiaqi He
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jiaxiao Wang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Changhong Wang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng Xie
- Preventive Treatment of Disease Center, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9, Dongge Road, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Wei Shi
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Almalki WH. Beyond the genome: lncRNAs as regulators of the PI3K/AKT pathway in lung cancer. Pathol Res Pract 2023; 251:154852. [PMID: 37837857 DOI: 10.1016/j.prp.2023.154852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Lung cancer is a prevalent and devastating disease, representing a significant global health burden. Despite advancements in therapeutic strategies, the molecular mechanisms underlying its pathogenesis remain incompletely understood. Lung cancer typically displays the deregulated activity of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which is vital for cell proliferation, survival, and metastasis. Emerging evidence suggests that long non-coding RNA (lncRNAs) can modulate the PI3K/AKT pathway, offering new insights into lung cancer biology and potential therapeutic opportunities. These lncRNA act as either oncogenes, promoting pathway activation, or tumour suppressors, attenuating pathway signalling. The dysregulation of lncRNA is associated with various cellular processes, including apoptosis, cell cycle control, epithelial-mesenchymal transition (EMT), and angiogenesis, ultimately influencing lung cancer growth and metastasis. The development of novel therapeutic strategies, such as small interfering RNAs (siRNAs), antisense oligonucleotides, and CRISPR/Cas9-mediated gene editing, holds promise for restoring lncRNAs dysregulation and re-establishing the equilibrium of the PI3K/AKT pathway. The emerging role of lncRNAs as regulators of the PI3K/AKT pathway sheds new light on the complex molecular landscape of lung cancer. Understanding the interplay between lncRNA and the PI3K/AKT pathway could lead to the identification of novel biomarkers for prognosis and therapeutic targets for precision medicine. The potential of lncRNAs-based therapeutics may pave the way for more effective and personalized treatment approaches in lung cancer and potentially other malignancies with dysregulated PI3K/AKT signalling. This review aims to explore the emerging role of lncRNAs as key regulators of the PI3K/AKT pathway in lung cancer.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
3
|
赵 齐, 王 楠, 李 亚, 吴 庆, 吴 兰. [Lnc-TMEM132D-AS1 overexpression reduces sensitivity of non-small cell lung cancer cells to osimertinib]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:242-250. [PMID: 36946044 PMCID: PMC10034553 DOI: 10.12122/j.issn.1673-4254.2023.02.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To screen the differentially expressed long non-coding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) cells with acquired resistance to osimertinib and explore their roles in drug resistance of the cells. METHODS The cell lines H1975_OR and HCC827_OR with acquired osimertinib resistance were derived from their osimertinib-sensitive parental NSCLC cell lines H1975 and HCC827, respectively, and their sensitivity to osimertinib was assessed with CCK-8 assay, clone formation assay and flow cytometry. RNA sequencing (RNA-seq) and real-time quantitative PCR (qPCR) were used to screen the differentially expressed lncRNAs in osimertinib-resistant cells. The role of the identified lncRNA in osimertinib resistance was explored using CCK-8, clone formation and Transwell assays, and its subcellular localization and downstream targets were analyzed by nucleoplasmic separation, bioinformatics analysis and qPCR. RESULTS The resistance index of H1975_OR and HCC827_OR cells to osimertinib was 598.70 and 428.82, respectively (P < 0.001), and the two cell lines showed significantly increased proliferation and colony-forming abilities with decreased apoptosis (P < 0.01). RNA-seq identified 34 differentially expressed lncRNAs in osimertinib-resistant cells, and among them lnc-TMEM132D-AS1 showed the highest increase of expression after acquired osimertinib resistance (P < 0.01). Analysis of the TCGA database suggested that the level of lnc-TMEM132D-AS1 was significantly higher in NSCLC than in adjacent tissues (P < 0.001), and its high expression was associated with a poor prognosis of the patients. In osimertinib-sensitive cells, overexpression of Lnc-TMEM132D-AS1 obviously promoted cell proliferation, colony formation and migration (P < 0.05), while Lnc-TMEM132D-AS1 knockdown partially restored osimertinib sensitivity of the resistant cells (P < 0.01). Lnc-TMEM132D-AS1 was localized mainly in the cytoplasm, and bioinformatics analysis suggested that hsa-miR-766-5p was its candidate target, and their expression levels were inversely correlated. The target mRNAs of hsa-miR-766-5p were mainly enriched in the Ras signaling pathway. CONCLUSION The expression of lnc-TMEM132D-AS1 is significantly upregulated in NSCLC cells with acquired osimertinib resistance, and may serve as a potential biomarker and therapeutic target for osimertinibresistant NSCLC.
Collapse
Affiliation(s)
- 齐林 赵
- 重庆医科大学附属第一医院心胸外科,重庆 400016Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 楠 王
- 重庆医科大学生命科学研究院,重庆 400016Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - 亚霁 李
- 重庆医科大学生命科学研究院,重庆 400016Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - 庆琛 吴
- 重庆医科大学附属第一医院心胸外科,重庆 400016Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 兰香 吴
- 重庆医科大学生命科学研究院,重庆 400016Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Bai Z, Hu K, Yu J, Shen Y, Chen C. Macrophage migration inhibitory factor protects bone marrow mesenchymal stem cells from hypoxia/ischemia-induced apoptosis by regulating lncRNA MEG3. J Zhejiang Univ Sci B 2022; 23:989-1001. [PMID: 36518052 PMCID: PMC9758713 DOI: 10.1631/jzus.b2200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This research was performed to explore the effect of macrophage migration inhibitory factor (MIF) on the apoptosis of bone marrow mesenchymal stem cells (BMSCs) in ischemia and hypoxia environments. METHODS The cell viability of BMSCs incubated under hypoxia/ischemia (H/I) conditions with or without pretreatment with MIF or triglycidyl isocyanurate (TGIC) was detected using cell counting kit-8 (CCK-8) analysis. Plasmids containing long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) or β-catenin small interfering RNA (siRNA) were used to overexpress or downregulate the corresponding gene, and the p53 signaling pathway was activated by pretreatment with TGIC. The influences of MIF, overexpression of lncRNA MEG3, activation of the p53 signaling pathway, and silencing of β-catenin on H/I-induced apoptosis of BMSCs were revealed by western blotting, flow cytometry, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining. RESULTS From the results of CCK-8 assay, western blotting, and flow cytometry, pretreatment with MIF significantly decreased the H/I-induced apoptosis of BMSCs. This effect was inhibited when lncRNA MEG3 was overexpressed by plasmids containing MEG3. The p53 signaling pathway was activated by TGIC, and β-catenin was silenced by siRNA. From western blot results, the expression levels of β-catenin in the nucleus and phosphorylated p53 (p-p53) were downregulated and upregulated, respectively, when the lncRNA MEG3 was overexpressed. Through flow cytometry, MIF was also shown to significantly alleviate the increased reactive oxygen species (ROS) level of BMSCs caused by H/I. CONCLUSIONS In summary, we conclude that MIF protected BMSCs from H/I-induced apoptosis by downregulating the lncRNA MEG3/p53 signaling pathway, activating the Wnt/β-catenin signaling pathway, and decreasing ROS levels.
Collapse
Affiliation(s)
- Zhibiao Bai
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Kai Hu
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
| | - Jiahuan Yu
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
| | - Yizhe Shen
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
| | - Chun Chen
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China.
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| |
Collapse
|
5
|
Zhu M, Xiang H, Peng Z, Ma Z, Shen J, Wang T, Chen L, Cao D, Gu S, Wang M, Cao J. Silencing the expression of lncRNA SNHG15 may be a novel therapeutic approach in human breast cancer through regulating miR-345-5p. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1173. [PMID: 36467335 PMCID: PMC9708471 DOI: 10.21037/atm-22-5275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/01/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) short nucleolar RNA host gene 15 (SNHG15) has been found to have an oncogenic function in numerous malignancies. Nevertheless, the biological function and regulatory mechanisms of SNHG15 in breast cancer have not been fully elucidated. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of SNHG15 and in MDA-MB-231 breast cancer cells. The expression of SNHG15 was silenced using small interfering RNA (siRNA) technology. The proliferation and migration of the cells were examined by colony formation assays, cell counting kit 8 (CCK-8) assays, and transwell assays. For the zebrafish xenograft injection experiments, cultured cells labelled with the fluorescent dye CM-DiI were injected into the perivitelline space of the larvae. RESULTS This present study revealed that the expression of lncRNA SNHG15 (lnc-SNHG15) was significantly upregulated in breast cancer cells, and its overexpression was associated with the tumor. The relative expression of lnc-SNHG15 could be downregulated using siRNAs, and silencing lnc-SNHG15 inhibited the proliferation and the migration of MDA-MB-231 cells. In vivo experiments using the zebrafish xenograft model showed similar results. Mechanistically, the knockdown effect of lnc-SNHG15 could be restored by inhibiting the expression of the miR-345-5p, confirming the negative regulation between lnc-SNHG15 and miR-345-5p. Interestingly, cisplatin treatment combined with SNHG15 knockdown effectively inhibited MDA-MB-231 cell proliferation and migration in the zebrafish xenograft compared to negative controls. CONCLUSIONS In conclusion, lnc-SNHG15 knockdown increased miR-345-5p expression and negated cisplatin resistance in breast cancer cells, and thus, lnc-SNHG15 may be a potential novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Minshu Zhu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Haifei Xiang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Zheng Peng
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhaosheng Ma
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Jianfei Shen
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Tingting Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lingyang Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Donghang Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shanye Gu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Mingcang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Jianbin Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| |
Collapse
|
6
|
FANG L, QI H, WANG P, WANG S, LI T, XIA T, PIAO H, GU C. UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis. J Zhejiang Univ Sci B 2022; 23:863-875. [PMID: 36226539 PMCID: PMC9561404 DOI: 10.1631/jzus.b2200144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lei FANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Huan QI
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Peng WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Shiqing WANG
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tianjiao LI
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Tian XIA
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hailong PIAO
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China,Hailong PIAO,
| | - Chundong GU
- Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China,Chundong GU,
| |
Collapse
|
7
|
Li X, Zhang Y, Wang N, Yuan Z, Chen X, Chen Q, Deng H, Tong X, Chen H, Duan Y, Wei Y. CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells. J Zhejiang Univ Sci B 2022; 23:732-746. [PMID: 36111570 DOI: 10.1631/jzus.b2200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND: Circular RNAs (circRNAs) are covalently closed single-stranded RNAs with multiple biological functions. CircRNA.0007127 is derived from the carbon catabolite repression 4-negative on TATA-less (CCR4-NOT) complex subunit 2 (CNOT2), which was found to regulate tumor cell apoptosis through caspase pathway. METHODS: Potential circRNA.0007127 target microRNAs (miRNAs) were analyzed by miRanda, TargetScan, and RNAhybrid software, and the miRNAs with binding sites for apoptosis-related genes were screened. The roles of circRNA.0007127 and its downstream target, microRNA (miR)-513a-5p, were validated by quantitative real-time polymerase chain reaction (qPCR), flow cytometry, mitochondrial membrane potential, immunofluorescence, western blot, and caspase-8 (CASP8) protein activity in vitro in H2O2-induced K-562 cells. The circRNA.0007127‒miR-513a-5p and CASP8‒miR-513a-5p interactions were verified by luciferase reporter assays. RESULTS: Silencing circRNA.0007127 decreased cell apoptosis by inhibiting CASP8 pathway activation in K-562 cells. Compared with the control group, the expression of CASP8 was reduced by 50% and the 43-kD fragment of CASP8 protein was significantly reduced (P≤0.05). The luciferase reporting assay showed that circRNA.0007127 combined with miR-513a-5p or CASP8, with extremely significant differences (P≤0.001). The overexpression of miR-513a-5p inhibited the gene expression level of CASP8 in a human myeloid leukemia cell model (75% change) and the level of a 43-kD fragment of CASP8 protein (P≤0.01). The rescue experiment showed that cotransfection with circRNA.0007127 small-interfering RNA (siRNA) and the miR-513a-5p inhibitor increased CASP8 gene expression and the apoptosis rate, suggesting that the miR-513a-5p inhibitor is a circRNA.0007127 siRNA antagonist. CONCLUSIONS: CircRNA.0007127 regulates K-562 cell apoptosis through the miR-513a-5p/CASP8 axis, which can serve as a novel powerful molecular target for K-562 cells.
Collapse
Affiliation(s)
- Xiajing Li
- School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yiyu Zhang
- Department of Blood Transfusion, Shenzhen Longhua Central Hospital, Shenzhen 518000, China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510000, China.,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510000, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, the Second Affiliation Hospital of South China University of Technology, Guangzhou 510000, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou 510000, China
| | - Xiaojie Chen
- Department of Blood Transfusion, the Second Affiliation Hospital of South China University of Technology, Guangzhou 510000, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou 510000, China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510000, China.,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510000, China
| | - Hui Deng
- Department of Blood Transfusion, the Second Affiliation Hospital of South China University of Technology, Guangzhou 510000, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou 510000, China
| | - Xinxin Tong
- Department of Blood Transfusion, the Second Affiliation Hospital of South China University of Technology, Guangzhou 510000, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou 510000, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510000, China. ,
| | - Yaming Wei
- Department of Blood Transfusion, the Second Affiliation Hospital of South China University of Technology, Guangzhou 510000, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou 510000, China.
| |
Collapse
|
8
|
Wu Z, Yu X, Zhang S, He Y, Guo W. The role of PI3K/AKT signaling pathway in gallbladder carcinoma. Am J Transl Res 2022; 14:4426-4442. [PMID: 35958463 PMCID: PMC9360899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The prognosis of gallbladder carcinoma (GBC) is poor, with a less than 5% five-year survival rate. Identifying the mechanisms underlying GBC occurrence and advancement is necessary to improve GBC patient prognosis and survival rates. The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (AKT) pathway is involved in cancer deterioration, tumor growth, cell proliferation, and distant metastasis. Studying the impacts of the PI3K/AKT pathway has resulted in the identification of key factors involved in GBC progression that might serve as therapeutic targets, promoting the development of new treatments. METHODS We reviewed recent literature exploring abnormal regulation of the PI3K/AKT pathway in gallbladder cancer, with a focus on abnormal RNA levels, protein level regulation, and drug treatment advances. RESULTS Further investigation of the regulation of small molecules and proteins by the PI3K/AKT pathway might ultimately provide new diagnostic or prognostic markers or cancer treatment targets. Recent studies have focused on RNA and proteins involved in the regulation of the cell cycle or cell movement in cancer progression via PI3K/AKT pathway, the use of anticancer drug combinations, or the anticancer effects of drugs not currently utilized for cancer treatment. CONCLUSIONS We herein review the known available molecules that affect the PI3K/AKT pathway in patients with GBC and the mechanisms of drug action associated with this pathway.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| |
Collapse
|
9
|
Zhang W, Ren W, Han D, Zhao G, Wang H, Guo H, Zheng Y, Ji Z, Gao W, Yuan B. LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells. J Zhejiang Univ Sci B 2022; 23:502-514. [PMID: 35686528 DOI: 10.1631/jzus.b2101052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA‒microRNA (miRNA)‒messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.
Collapse
Affiliation(s)
- Weidi Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenzhi Ren
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China
| | - Dongxu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Bao Yuan
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China. ,
| |
Collapse
|
10
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
11
|
Sumbly V, Landry I. Unraveling the Role of STK11/LKB1 in Non-small Cell Lung Cancer. Cureus 2022; 14:e21078. [PMID: 35165542 PMCID: PMC8826623 DOI: 10.7759/cureus.21078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
There are two major groups of lung cancer: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLCs can be further separated into three different categories: lung adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Pulmonary adenocarcinomas represent nearly half of all lung cancer cases and are known to be caused by smoking, certain occupational exposures, and specific genetic mutations. Scientists have noticed that most NSCLCs are driven by defects in the following genes: EGFR, BRAF, ALK, MET, and HER. Abnormalities in the STK11/LKB1 gene have also been shown to induce lung adenocarcinoma. LKB1-deficient cancer cells contain an overactive AMPK “energy sensor,” which inhibits cellular death and promotes glucose, lipid, and protein synthesis via the mTOR protein complex. Studies have also discovered that the loss of STK11/LKB1 favors oncogenesis by creating an immunosuppressive environment for tumors to grow and accelerate events such as angiogenesis, epithelial-mesenchymal transition (EMT), and cell polarity destabilization. STK11/LKB1-mutant lung cancers are currently treated with radiotherapy with or without chemotherapy. Recent clinical trials studying the effects of glutaminase inhibitors, mTOR inhibitors, and anti-PD-L1 therapy in lung cancer patients have yielded promising results. This narrative review provides an overview of the STK11/LKB1 gene and its role in cancer development. Additionally, a summary of the LKB1/APMK/mTOR is provided.
Collapse
Affiliation(s)
- Vikram Sumbly
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals/Queens, Jamaica, USA
| | - Ian Landry
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals/Queens, Jamaica, USA
| |
Collapse
|
12
|
Zhou L, Dong C, Xu Z, Wang X, Zhang L, Chen S, Chen J, Zhu Y. NEDD8-conjugating enzyme E2 UBE2F confers radiation resistance by protecting lung cancer cells from apoptosis. J Zhejiang Univ Sci B 2021; 22:959-965. [PMID: 34783226 PMCID: PMC8593528 DOI: 10.1631/jzus.b2100170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer, which is exacerbated by environmental pollution and tobacco use, has become the most common cause of cancer-related deaths worldwide, with a five-year overall survival rate of only 19% (Siegel et al., 2020; Yang et al., 2020; Yu and Li, 2020). Nearly 85% of lung cancers are non-small cell lung cancers, of which lung adenocarcinoma is the most common subtype accounting for 50% of non-small cell lung cancer cases. At present, radiotherapy is the primary therapeutic modality for lung cancer at different stages, with significant prolongation of survival time (Hirsch et al., 2017; Bai et al., 2019; Shi et al., 2020). Irradiation can generate reactive oxygen species (ROS) through the radiolysis reaction of water and oxygen, cause DNA damage and oxidative stress, and subsequently result in cancer cell death (Kim et al., 2019). Nevertheless, radioresistance seriously hinders the success of treatment for lung cancer, owing to local recurrence and distant metastasis (Huang et al., 2021). Compared with small cell lung cancer, non-small cell lung cancer shows more tolerance to radiotherapy. Therefore, it is of great importance to decipher key mechanisms of radioresistance and identify effective molecular radiosensitizers to improve patient survival.
Collapse
Affiliation(s)
- Lisha Zhou
- Department of Basic Medicine, Medical College, Taizhou University, Taizhou 318000, China.
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhuoming Xu
- Department of Basic Medicine, Medical College, Taizhou University, Taizhou 318000, China
| | - Xinran Wang
- Department of Basic Medicine, Medical College, Taizhou University, Taizhou 318000, China
| | - Luyi Zhang
- Department of Basic Medicine, Medical College, Taizhou University, Taizhou 318000, China
| | - Siyuan Chen
- Department of Basic Medicine, Medical College, Taizhou University, Taizhou 318000, China
| | - Jiahao Chen
- Department of Basic Medicine, Medical College, Taizhou University, Taizhou 318000, China
| | - Yingying Zhu
- Department of Basic Medicine, Medical College, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
13
|
Zhang P, Li Z, Yang G. Silencing of ISLR inhibits tumour progression and glycolysis by inactivating the IL‑6/JAK/STAT3 pathway in non‑small cell lung cancer. Int J Mol Med 2021; 48:222. [PMID: 34713300 PMCID: PMC8559699 DOI: 10.3892/ijmm.2021.5055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the second most frequent cancer type in both men and women, and it is considered to be one of the major causes of cancer-related mortality worldwide. However, few biomarkers are currently available for the diagnosis of lung cancer. The aim of the present study was to investigate the function of the immunoglobulin superfamily containing leucine-rich repeat (ISLR) gene in non-small cell lung cancer (NSCLC) cells, and to elucidate the underlying molecular mechanism of its action. The current study analysed ISLR expression in NSCLC tumour and normal tissues using The Cancer Genome Atlas cohort datasets. ISLR expression in NSCLC cell lines was determined using reverse transcription-quantitative PCR. Cell Counting Kit-8, soft agar colony formation, wound healing, Transwell, flow cytometry and glycolysis assays were performed to determine the effects of ISLR silencing or overexpression on cells. The expression levels of the genes involved in epithelial-mesenchymal transition (EMT), apoptosis and glycolysis were evaluated via western blotting. Transfected cells were exposed to the pathway activator, IL-6, to validate the regulatory pathway. ISLR was overexpressed in NSCLC tissues and cell lines. Overall, patients with high ISLR expression had lower survival rates. In addition, small interfering RNA-ISLR inhibited the proliferation, EMT, migration, invasion and glycolysis of NSCLC cells, and promoted their apoptosis. ISLR overexpression had the opposite effect on tumour progression and glycolysis in NSCLC cells. Gene set enrichment analysis and western blotting results indicated that the IL-6/Janus kinase (JAK)/STAT3 pathway was enriched in ISLR-related NSCLC. Knockdown of ISLR inhibited IL-6-induced proliferation, invasion, migration and glycolysis in human NSCLC cells. In summary, ISLR silencing can inhibit tumour progression and glycolysis in NSCLC cells by activating the IL-6/JAK/STAT3 signalling pathway, which is a potential molecular target for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| | - Zhen Li
- Department of Pulmonary and Critical Care Medicine, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| | - Guangming Yang
- Department of Tumor Radiotherapy, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| |
Collapse
|
14
|
Jiang G, Yu H, Li Z, Zhang F. lncRNA cytoskeleton regulator reduces non‑small cell lung cancer radiosensitivity by downregulating miRNA‑206 and activating prothymosin α. Int J Oncol 2021; 59:88. [PMID: 34558643 PMCID: PMC8480387 DOI: 10.3892/ijo.2021.5268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to explore the role of the long noncoding RNA cytoskeleton regulator (CYTOR) in non-small cell lung cancer (NSCLC) radiosensitivity by manipulating the microRNA (miR)-206/prothymosin α (PTMA) axis. First, 58 pairs of NSCLC and paracancerous tissues, normal human lung epithelial cells and NSCLC cells were collected to analyze CYTOR expression and the relation- ship between CYTOR and NSCLC prognosis. Subsequently, CYTOR expression in radioresistant cells was assessed. Radioresistant cells with low CYTOR expression and parental cells with high CYTOR expression were established. Functional assays were then performed to assess changes in cell radiosensitivity after irradiation treatment. Subsequently, the downstream mechanism of CYTOR was explored. The binding interactions between CYTOR and miR-206 and between miR-206 and PTMA were predicted and certified. Xenograft transplantation was applied to confirm the role of CYTOR in the radiosensitivity of NSCLC. CYTOR was overexpressed in NSCLC and was associated with poor prognosis. CYTOR was further upregulated in NSCLC cells with radioresistance. CYTOR knockdown enhanced the radiosensitivity of NSCLC cells, while overexpression of CYTOR led to the opposite result. Mechanistically, CYTOR specifically bound to miR-206 and silencing CYTOR promoted miR-206 to enhance the radiosensitivity of NSCLC cells. PTMA is a target of miR-206 and silencing CYTOR inhibited PTMA expression via miR-206, thus promoting radiosensitivity of NSCLC cells. CYTOR knockdown also enhanced NSCLC cell radiosensitivity in vivo. CYTOR was highly expressed in NSCLC, while silencing CYTOR potentiated NSCLC cell radiosensitivity by upregulating miR-206 and suppressing PTMA. The present study preliminarily revealed the role of CYTOR in radiotherapy sensitivity of NSCLC and provided a novel potential target for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Department of Oncology Radiotherapy, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Honge Yu
- Department of Oncology, People's Hospital of Haiyang, Haiyang, Shandong 265100, P.R. China
| | - Zhengliang Li
- Department of Oncology Radiotherapy, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Fang Zhang
- Department of Oncology Radiotherapy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
15
|
Aftabi Y, Ansarin K, Shanehbandi D, Khalili M, Seyedrezazadeh E, Rahbarnia L, Asadi M, Amiri-Sadeghan A, Zafari V, Eyvazi S, Bakhtiyari N, Zarredar H. Long non-coding RNAs as potential biomarkers in the prognosis and diagnosis of lung cancer: A review and target analysis. IUBMB Life 2020; 73:307-327. [PMID: 33369006 DOI: 10.1002/iub.2430] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNA) have been emerged as a novel class of molecular regulators in cancer. They are dysregulated in many types of cancer; however, there is not enough knowledge available on their expression and functional profiles. Lung cancer is the leading cause of the cancer deaths worldwide. Generally, lncRNAs may be associated with lung tumor pathogenesis and they may act as biomarkers for the cancer prognosis and diagnosis. Compared to other invasive prognostic and diagnostic methods, detection of lncRNAs might be a user-friendly and noninvasive method. In this review article, we selected 27 tumor-associated lncRNAs by literature reviewing to further discussing in detail for using as diagnostic and prognostic biomarkers in lung cancer. Also, in an in silico target analysis, the "Experimentally supported functional regulation" approach of the LncTarD web tool was used to identifying the target genes and regulatory mechanisms of the selected lncRNAs. The reports on diagnostic and prognostic potential of all selected lncRNAs were discussed. However, the target genes and regulatory mechanisms of the 22 lncRNAs were identified by in silico analysis and we found the pathways that are controlled by each target group of lncRNAs. They use epigenetic mechanisms, ceRNA mechanisms, protein interaction and sponge mechanism. Also, 10, 23, 5, and 28 target genes for each of these mechanisms were identified, respectively. Finally, each group of target genes controls 50, 12, 7, and 2 molecular pathways, respectively. In conclusion, LncRNAs could be used as biomarkers in lung cancer due to their roles in control of several signaling pathways related to lung tumors. Also, it seems that lncRNAs, which use epigenetic mechanisms for modulating a large number of pathways, could be considered as important subjects for lung cancer-related diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Rahat Breathe and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Shirin Eyvazi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Bakhtiyari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|