1
|
Nourie N, Boueri C, Tran Minh H, Divard G, Lefaucheur C, Salmona M, Gressens SB, Louis K. BK Polyomavirus Infection in Kidney Transplantation: A Comprehensive Review of Current Challenges and Future Directions. Int J Mol Sci 2024; 25:12801. [PMID: 39684510 DOI: 10.3390/ijms252312801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BK polyomavirus (BKPyV) infection of the kidney graft remains a major clinical issue in the field of organ transplantation. Risk factors for BKPyV-associated nephropathy (BKPyVAN) and molecular tools for determining viral DNA loads are now better defined. BKPyV DNAemia in plasma, in particular, plays a central role in diagnosing active infection and managing treatment decisions. However, significant gaps remain in the development of reliable biomarkers that can anticipate BKPyV viremia and predict disease outcomes. Biomarkers under active investigation include urine-based viral load assays, viral antigen detection, and immune responses against BKPyV, which may offer more precise methods for monitoring disease progression. In addition, treatment of BKPyVAN is currently based on immunosuppression minimization, while the role of adjunctive therapies remains an area of active research, highlighting the need for more personalized treatment regimens. Ongoing clinical trials are also exploring the efficacy of T-cell-based immunotherapies. The clinical management of BKPyV infection, based on proactive virological monitoring, immune response assessment, integrated histopathology, and timely immunosuppression reduction, is likely to reduce the burden of disease and improve outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Nicole Nourie
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
- Human Immunology and Immunopathology, Inserm UMR 976, Université Paris Cité, 75010 Paris, France
| | - Céline Boueri
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Hoang Tran Minh
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Gillian Divard
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Maud Salmona
- Laboratory of Virology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Simon B Gressens
- Department of Infectious Diseases, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
- Team 3I Brain, Inserm UMR 1141, 75019 Paris, France
| | - Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
- Human Immunology and Immunopathology, Inserm UMR 976, Université Paris Cité, 75010 Paris, France
| |
Collapse
|
3
|
Cao C, Yuan L, Wang Y, Liu H, Cuello Garcia H, Huang H, Tan W, Zhou Y, Shi H, Jiang T. Analysis of the primary factors influencing donor derived cell-free DNA testing in kidney transplantation. Front Immunol 2024; 15:1435578. [PMID: 39308855 PMCID: PMC11412870 DOI: 10.3389/fimmu.2024.1435578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
The donor-derived cell-free DNA (ddcfDNA) is found in the plasma and urine of kidney transplant recipients and displays notable potential in diagnosing rejection, specifically antibody-mediated rejection (ABMR). Nonetheless, the quantitative methods of ddcfDNA lacking standardization and diverse detection techniques can impact the test outcomes. Besides, both the fraction and absolute values of ddcfDNA have been reported as valuable markers for rejection diagnosis, but they carry distinct meanings and are special in various pathological conditions. Additionally, ddcfDNA is highly sensitive to kidney transplant injury. The various sampling times and combination with other diseases can indeed impact ddcfDNA detection values. This review comprehensively analyses the various factors affecting ddcfDNA detection in kidney transplantation, including the number of SNPs and sequencing depths. Furthermore, different pathological conditions, distinct sampling time points, and the presence of complex heterologous signals can influence ddcfDNA testing results in kidney transplantation. The review also provides insights into ddcfDNA testing on different platforms along with key considerations.
Collapse
Affiliation(s)
- Changling Cao
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Li Yuan
- Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yinfeng Wang
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Haitao Liu
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | | | - Huiqiang Huang
- Biostatistics, Research & Development (R&D), AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Weiqiang Tan
- Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| | - Tingya Jiang
- Medical Department, AlloDx Biotech (Shanghai), Co., Ltd, Shanghai, China
| |
Collapse
|
4
|
Wen J, Sun R, Yang H, Ran Q, Hou Y. Detection of BK polyomavirus-associated nephropathy using plasma graft-derived cell-free DNA: Development of a novel algorithm from programmed monitoring. Front Immunol 2022; 13:1006970. [PMID: 36275762 PMCID: PMC9582120 DOI: 10.3389/fimmu.2022.1006970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Graft-derived cell-free DNA (GcfDNA) is a promising non-invasive biomarker for detecting allograft injury. In this study, we aimed to evaluate the efficacy of programmed monitoring of GcfDNA for identifying BK polyomavirus-associated nephropathy (BKPyVAN) in kidney transplant recipients. We recruited 158 kidney transplant recipients between November 2020 and December 2021. Plasma GcfDNA was collected on the tenth day, first month, third month, and sixth month for programmed monitoring and one day before biopsy. ΔGcfDNA (cp/mL) was obtained by subtracting the baseline GcfDNA (cp/mL) from GcfDNA (cp/mL) of the latest programmed monitoring before biopsy. The receiver operating characteristic curve showed the diagnostic performance of GcfDNA (cp/mL) at biopsy time and an optimal area under the curve (AUC) of 0.68 in distinguishing pathologically proven BKPyVAN from pathologically unconfirmed BKPyVAN. In contrast, ΔGcfDNA (cp/mL) had a sensitivity and specificity of 80% and 84.6%, respectively, and an AUC of 0.83. When distinguishing clinically diagnosed BKPyVAN from clinical excluded BKPyVAN, the AUC of GcfDNA (cp/mL) was 0.59 at biopsy time, and ΔGcfDNA (cp/mL) had a sensitivity and specificity of 81.0% and 76.5%, respectively, and an AUC of 0.81. Plasma ΔGcfDNA (cp/mL) was not significantly different between TCMR [0.15 (0.08, 0.24) cp/mL] and pathologically proven BKPyVAN[0.34 (0.20, 0.49) cp/mL]. In conclusion, we recommend programmed monitoring of plasma GcfDNA levels after a kidney transplant. Based on our findings from the programmed monitoring, we have developed a novel algorithm that shows promising results in identifying and predicting BKPyVAN.
Collapse
Affiliation(s)
- Jingyu Wen
- Department of Medical Insurance, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongcun Sun
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Qing Ran
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yifu Hou,
| |
Collapse
|
5
|
Guo L, Shen J, Lei W, Yan P, Wang M, Zhou Q, Wang H, Wu J, Chen J, Wang R. Plasma Donor-Derived Cell-Free DNA Levels Are Associated With the Inflammatory Burden and Macrophage Extracellular Trap Activity in Renal Allografts. Front Immunol 2022; 13:796326. [PMID: 35386710 PMCID: PMC8977515 DOI: 10.3389/fimmu.2022.796326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies have confirmed the role of plasma donor-derived cell-free DNA (ddcfDNA) as a reliable non-invasive biomarker for allograft injury after kidney transplantation. Whereas the variability of plasma ddcfDNA levels among recipients has limited their clinical use. This study aimed to explore the intrinsic factors associated with plasma ddcfDNA elevation by investigating the impact of Banff lesions and inflammatory infiltrates on ddcfDNA levels in kidney transplant recipients. From March 2017 to September 2019, a total of 106 kidney transplant recipients with matched allograft biopsies were included, consisting of 13 recipients with normal/nonspecific changes, 13 recipients with borderline changes, 60 with T cell-mediated rejection, and 20 with antibody-mediated rejection. Histologic classification was performed according to the Banff 2017 criteria by two experienced pathologists. Plasma ddcfDNA fractions ranged from 0.12% to 10.22%, with a median level of 0.91%. Banff histology subelements including glomerulitis, intimal arteritis, and severe interstitial inflammation were correlated with increased plasma ddcfDNA levels. The inflammatory cell infiltrate in the allografts was phenotyped by immunochemistry and automatically counted by digital image recognition. Pearson correlation analysis revealed a significant positive correlation between macrophage infiltrations in allografts and plasma ddcfDNA levels. Additionally, macrophage extracellular trap (MET) activity was significantly associated with the rise in plasma ddcfDNA levels. Our findings demonstrated that plasma ddcfDNA could reflect the inflammatory state in renal allografts and suggested the potential role of METs in the pathogenesis of allograft injury.
Collapse
Affiliation(s)
- Luying Guo
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jia Shen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenhua Lei
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Pengpeng Yan
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Meifang Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Huiping Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|