1
|
High-throughput monitoring of integration site clonality in preclinical and clinical gene therapy studies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:14061. [PMID: 26052530 PMCID: PMC4449016 DOI: 10.1038/mtm.2014.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/02/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022]
Abstract
Gene transfer to hematopoietic stem cells with integrating vectors not only allows sustained correction of monogenic diseases but also tracking of individual clones in vivo. Quantitative real-time PCR (qPCR) has been shown to be an accurate method to quantify individual stem cell clones, yet due to frequently limited amounts of target material (especially in clinical studies), it is not useful for large-scale analyses. To explore whether vector integration site (IS) recovery techniques may be suitable to describe clonal contributions if combined with next-generation sequencing techniques, we designed artificial ISs of different sizes which were mixed to simulate defined clonal situations in clinical settings. We subjected all mixes to either linear amplification–mediated PCR (LAM-PCR) or nonrestrictive LAM-PCR (nrLAM-PCR), both combined with 454 sequencing. We showed that nrLAM-PCR/454-detected clonality allows estimating qPCR-detected clonality in vitro. We then followed the kinetics of two clones detected in a patient enrolled in a clinical gene therapy trial using both, nrLAM-PCR/454 and qPCR and also saw nrLAM-PCR/454 to correlate to qPCR-measured clonal contributions. The method presented here displays a feasible high-throughput strategy to monitor clonality in clinical gene therapy trials is at hand.
Collapse
|
2
|
Brugman MH, Suerth JD, Rothe M, Suerbaum S, Schambach A, Modlich U, Kustikova O, Baum C. Evaluating a ligation-mediated PCR and pyrosequencing method for the detection of clonal contribution in polyclonal retrovirally transduced samples. Hum Gene Ther Methods 2013; 24:68-79. [PMID: 23384086 DOI: 10.1089/hgtb.2012.175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retroviral gene transfer has proven therapeutic potential in clinical gene therapy trials but may also cause abnormal cell growth via perturbation of gene expression in the locus surrounding the insertion site. By establishing clonal marks, retroviral insertions are also used to describe the regenerative potential of individual cells. Deep sequencing approaches have become the method of choice to study insertion profiles in preclinical models and clinical trials. We used a protocol combining ligation-mediated polymerase chain reaction (LM-PCR) and pyrosequencing for insertion profiling and quantification in cells of various tissues transduced with various retroviral vectors. The presented method allows simultaneous analysis of a multitude of DNA-barcoded samples per pyrosequencing run, thereby allowing cost-effective insertion screening in studies with multiple samples. In addition, we investigated whether the number of pyrosequencing reads can be used to quantify clonal abundance. By comparing pyrosequencing reads against site-specific quantitative PCR and by performing spike-in experiments, we show that considerable variation exists in the quantification of insertion sites even when present in the same clone. Our results suggest that the protocol used here and similar approaches might misinterpret abundance clones defined by insertion sites, unless careful calibration measures are taken. The crucial variables causing this variation need to be defined and methodological improvements are required to establish pyrosequencing reads as a quantification measure in polyclonal situations.
Collapse
Affiliation(s)
- Martijn H Brugman
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Cornils K, Bartholomae CC, Thielecke L, Lange C, Arens A, Glauche I, Mock U, Riecken K, Gerdes S, von Kalle C, Schmidt M, Roeder I, Fehse B. Comparative clonal analysis of reconstitution kinetics after transplantation of hematopoietic stem cells gene marked with a lentiviral SIN or a γ-retroviral LTR vector. Exp Hematol 2013; 41:28-38.e3. [DOI: 10.1016/j.exphem.2012.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 08/28/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022]
|
4
|
Giordano FA, Sorg UR, Appelt JU, Lachmann N, Bleier S, Roeder I, Kleff V, Flasshove M, Zeller WJ, Allgayer H, von Kalle C, Fruehauf S, Moritz T, Laufs S. Clonal inventory screens uncover monoclonality following serial transplantation of MGMT P140K-transduced stem cells and dose-intense chemotherapy. Hum Gene Ther 2011; 22:697-710. [PMID: 21319998 DOI: 10.1089/hum.2010.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene transfer of mutant O(6)-methylguanine-DNA-methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSCs) protects hematopoiesis from alkylating agents and allows efficient in vivo selection of transduced HSCs. However, insertional mutagenesis, high regenerative stress associated with selection, and the genotoxic potential of alkylating drugs represent considerable risk factors for clinical applications of this approach. Therefore, we investigated the long-term effect of MGMT(P140K) gene transfer followed by repetitive, dose-intensive treatment with alkylating agents in a murine serial bone marrow transplant model and assessed clonality of hematopoiesis up to tertiary recipients. The substantial selection pressure resulted in almost completely transduced hematopoiesis in all cohorts. Ligation-mediated PCR and next-generation sequencing identified several repopulating clones carrying vector insertions in distinct genomic regions that were ∼ 9 kb of size (common integration sites). Beside polyclonal reconstitution in the majority of the mice, we also detected monoclonal or oligoclonal repopulation patterns with HSC clones showing vector insertions in the Usp10 or Tubb3 gene. Interestingly, neither Usp10, Tubb3, nor any of the genes located in common integration sites have been linked to clonal expansion in previous preclinical or clinical gene therapy trials. However, a considerable number of these genes are involved in DNA damage response and cell fate decision pathways following cytostatic drug application. Thus, in summary, our study advocates ligation-mediated PCR and next generation sequencing as an effective and reliable method to identify gene products associated with clonal survival in specific experimental settings such as chemoselection using alkylating agents.
Collapse
Affiliation(s)
- Frank A Giordano
- Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Since their first clinical trial 20 years ago, retroviral (gretroviral and lentiviral) vectors have now been used in more than 350 gene-therapy studies. Retroviral vectors are particularly suited for gene-correction of cells due to long-term and stable expression of the transferred transgene(s), and also because little effort is required for their cloning and production. Several monogenic inherited diseases, mostly immunodeficiencies, can now be successfully treated. The occurrence of insertional mutagenesis in some studies allowed extensive analysis of integration profiles of retroviral vectors, as well as the design of lentiviral vectors with increased safety properties. These new-generation vectors will enable us to continue the successful story of gene therapy, and treat more patients and even more complex diseases.
Collapse
Affiliation(s)
- Patrick Maier
- Department of Radiation Oncology, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | |
Collapse
|
6
|
Ohmine K, Li Y, Bauer TR, Hickstein DD, Russell DW. Tracking of specific integrant clones in dogs treated with foamy virus vectors. Hum Gene Ther 2010; 22:217-24. [PMID: 20738155 DOI: 10.1089/hum.2010.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vector integration can lead to proto-oncogene activation and malignancies during hematopoietic stem cell gene therapy. We previously used foamy virus vectors to deliver the CD18 gene under the control of an internal murine stem cell virus promoter and successfully treated dogs with canine leukocyte adhesion deficiency. Here we have tracked the copy numbers of 11 specific proviruses found in these animals for 36-42 months after transplantation, including examples within or near proto-oncogenes, tumor suppressor genes, and genes unrelated to cancer. We found no evidence for clonal expansion of any of the clones, including those with proviruses in the MECOM gene (MDS1-EVI1 complex). These results suggest that although foamy virus vectors may integrate near proto-oncogenes, this does not necessarily lead to clonal expansion and malignancies. Additionally, we show that copy number estimates of these specific proviruses based on linker-mediated PCR results are different from those obtained by quantitative PCR, but can provide a qualitative assessment of provirus levels.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
7
|
Kustikova O, Brugman M, Baum C. The genomic risk of somatic gene therapy. Semin Cancer Biol 2010; 20:269-78. [DOI: 10.1016/j.semcancer.2010.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 01/08/2023]
|
8
|
Mitsuhashi J, Hosoyama H, Tsukahara S, Katayama K, Noguchi K, Ito Y, Hatake K, Aiba K, Takahashi S, Sugimoto Y. In vivo expansion of MDR1-transduced cells accompanied by a post-transplantation chemotherapy regimen with mitomycin C and methotrexate. J Gene Med 2010; 12:596-603. [DOI: 10.1002/jgm.1474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Veldwijk MR, Sellner L, Stiefelhagen M, Kleinschmidt JA, Laufs S, Topaly J, Fruehauf S, Zeller WJ, Wenz F. Pseudotyped recombinant adeno-associated viral vectors mediate efficient gene transfer into primary human CD34(+) peripheral blood progenitor cells. Cytotherapy 2010; 12:107-12. [PMID: 19929455 DOI: 10.3109/14653240903348293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND AIMS Because of their pluripotency, human CD34(+) peripheral blood progenitor cells (PBPC) are targets of interest for the treatment of many acquired and inherited disorders using gene therapeutic approaches. Unfortunately, most current vector systems lack either sufficient transduction efficiency or an appropriate safety profile. Standard single-stranded recombinant adeno-associated virus 2 (AAV2)-based vectors offer an advantageous safety profile, yet lack the required efficiency in human PBPC. METHODS A panel of pseudotyped AAV vectors (designated AAV2/x, containing the vector genome of serotype 2 and capsid of serotype x, AAV2/1-AAV2/6) was screened on primary human granulocyte-colony-stimulating factor (G-CSF)-mobilized CD34(+) PBPC to determine their gene transfer efficacy. Additionally, double-stranded self-complementary AAV (dsAAV) were used to determine possible second-strand synthesis limitations. RESULTS AAV2/6 vectors proved to be the most efficient [12.8% (1.8-25.4%) transgene-expressing PBPC after a single transduction], being significantly more efficient (all P<0.005) than the other vectors [AAV2/2, 2.0% (0.2-7.3%); AAV2/1, 1.3% (0.1-2.9%); others, <; 1% transgene-expressing PBPC]. In addition, the relevance of the single-to-double-strand conversion block in transduction of human PBPC could be shown using pseudotyped dsAAV vectors: for dsAAV2/2 [9.3% (8.3-20.3%); P<0.001] and dsAAV2/6 [37.7% (23.6-61.0%); P<0.001) significantly more PBPC expressed the transgene compared with their single-stranded counterparts; for dsAAV2/1, no significant increase could be observed. CONCLUSIONS We have shown that clinically relevant transduction efficiency levels using AAV-based vectors in human CD34(+) PBPC are feasible, thereby offering an efficient alternative vector system for gene transfer into this important target cell population.
Collapse
Affiliation(s)
- Marlon R Veldwijk
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maier P, Spier I, Laufs S, Veldwijk MR, Fruehauf S, Wenz F, Zeller WJ. Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K). Gene Ther 2009; 17:389-99. [PMID: 19865182 DOI: 10.1038/gt.2009.133] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myelotoxicity is a dose-limiting effect of many chemotherapeutic regimens. Thus, there is great interest in protecting human hematopoietic stem cells by the transfer of drug resistance genes. The main focus of this study was the simultaneous overexpression of multidrug resistance 1 (MDR1) and the O(6)-benzylguanine (O(6)-BG)-resistant mutant MGMT(P140K) (O(6)-methylguanine-DNA methyltransferase) with a bicistronic lentiviral vector (HR'SIN-MDR1-IRES-MGMT(P140K)), with regard to the capability to convey chemoprotection in the leukemia cell line, HL60, and human hematopoietic stem cells (CD34(+)). Combination therapy with O(6)-BG/1-(2-chloroethyl)-3-(4-amino-2-methylpyrimidine-5-yl)methyl-1-nitrosourea) (ACNU) plus paclitaxel showed a significant survival advantage of HL60 cells transduced with this combination vector. In CD34(+) cells, monotherapy with O(6)-BG/temozolomide (TMZ) resulted in an increased percentage of MGMT-positive cells (vs untreated cells) after transduction with HR'SIN-MDR1-IRES-MGMT(P140K) (28.3%). For combination therapy with O(6)-BG/temozolomide plus paclitaxel the increase was higher with the combination vector (52.8%) than with a vector expressing MGMT(P140K) solely (29.1%). With regard to MDR1-positive cells the protective effect of the combination vector (88.5%) was comparable to the single vector HR'SIN-MDR1 (90.0%) for monotherapy with paclitaxel and superior for combination therapy with O(6)-BG/temozolomide plus paclitaxel (84.6 vs 69.7%). In conclusion, the combination vector presents simultaneous protective effects of two drug-resistance genes, offering an opportunity to increase the cancer therapeutic index.
Collapse
Affiliation(s)
- P Maier
- Pharmacology of Cancer Treatment, DKFZ, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Foster SD, Oram SH, Wilson NK, Göttgens B. From genes to cells to tissues--modelling the haematopoietic system. MOLECULAR BIOSYSTEMS 2009; 5:1413-20. [PMID: 19763334 DOI: 10.1039/b907225j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Haematopoiesis (or blood formation) in general and haematopoietic stem cells more specifically represent some of the best studied mammalian developmental systems. Sophisticated purification protocols coupled with powerful biological assays permit functional analysis of highly purified cell populations both in vitro and in vivo. However, despite several decades of intensive research, the sheer complexity of the haematopoietic system means that many important questions remain unanswered or even unanswerable with current experimental tools. Scientists have therefore increasingly turned to modelling to tackle complexity at multiple levels ranging from networks of genes to the behaviour of cells and tissues. Early modelling attempts of gene regulatory networks have focused on core regulatory circuits but have more recently been extended to genome-wide datasets such as expression profiling and ChIP-sequencing data. Modelling of haematopoietic cells and tissues has provided insight into the importance of phenotypic heterogeneity for the differentiation of normal progenitor cells as well as a greater understanding of treatment response for particular pathologies such as chronic myeloid leukaemia. Here we will review recent progress in attempts to reconstruct segments of the haematopoietic system. A variety of modelling strategies will be covered from small-scale, protein-DNA or protein-protein interactions to large scale reconstructions. Also discussed will be examples of how stochastic modelling may be applied to multi cell systems such as those seen in normal and malignant haematopoiesis.
Collapse
Affiliation(s)
- Samuel D Foster
- Haematopoietic Stem Cell Laboratory, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Rd, Cambridge, CB2 0XY
| | | | | | | |
Collapse
|
12
|
Apáti A, Orbán TI, Varga N, Németh A, Schamberger A, Krizsik V, Erdélyi-Belle B, Homolya L, Várady G, Padányi R, Karászi E, Kemna EWM, Német K, Sarkadi B. High level functional expression of the ABCG2 multidrug transporter in undifferentiated human embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2700-9. [PMID: 18793608 DOI: 10.1016/j.bbamem.2008.08.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/15/2008] [Accepted: 08/06/2008] [Indexed: 01/09/2023]
Abstract
Expression of multidrug resistance ABC transporters has been suggested as a functional marker and chemoprotective element in early human progenitor cell types. In this study we examined the expression and function of the key multidrug-ABC transporters, ABCB1, ABCC1 and ABCG2 in two human embryonic stem (HuES) cell lines. We detected a high level ABCG2 expression in the undifferentiated HuES cells, while the expression of this protein significantly decreased during early cell differentiation. ABCG2 in HuES cells provided protection against mitoxantrone toxicity, with a drug-stimulated overexpression of the transporter. No significant expression of ABCB1/ABCC1 was found either in the undifferentiated or partially differentiated HuES cells. Examination of the ABCG2 mRNA in HuES cells indicated the use of selected promoter sites and a truncated 3' untranslated region, suggesting a functionally distinct regulation of this transporter in undifferentiated stem cells. The selective expression of the ABCG2 multidrug transporter indicates that ABCG2 can be applied as a marker for undifferentiated HuES cells. Moreover, protection of embryonic stem cells against xenobiotics and endobiotics may depend on ABCG2 expression and regulation.
Collapse
Affiliation(s)
- Agota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University and National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Constitutive Expression of the ATP-Binding Cassette Transporter ABCG2 Enhances the Growth Potential of Early Human Hematopoietic Progenitors. Stem Cells 2008; 26:810-8. [DOI: 10.1634/stemcells.2007-0527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Fehse B, Roeder I. Insertional mutagenesis and clonal dominance: biological and statistical considerations. Gene Ther 2007; 15:143-53. [PMID: 17972922 DOI: 10.1038/sj.gt.3303052] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Improvements of (retroviral) gene transfer vectors, stem cell isolation and culture techniques as well as transduction protocols eventually resulted not only in the successful genetic modification of cells capable of reconstituting the haematopoietic system in various animal models, but also human beings. This was a conditio sine qua non for the successful application of gene therapy for inherited diseases as meanwhile achieved for severe combined immune deficiencies (SCID-X1, ADA-SCID) and chronic granulomatous disease (CGD). Unexpectedly, in long-term animal experiments as well as in the follow up of patients from the CGD trial, haematopoietic clones bearing insertions in certain gene loci became dominant, which was most apparent in the myeloid blood compartment. Accumulating data strongly suggest that this clonal dominance was due to some growth and/or survival advantage conferred by gene-activating or -suppressing effects of the integrated retroviral vector (insertional mutagenesis). Importantly, such induced clonal dominance seems not to lead to malignant transformation of affected cell clones inadvertently. The latter finding has become the basis for the concept of 'induced haematopoietic stem cells', a potentially powerful tool to investigate genes involved in the regulation of mechanisms underlying competitive advantages of stem cells, but also in the multi-step nature of malignant transformation. Here we discuss promises and open issues of this concept as well as the important question of common insertion sites statistics and its pitfalls.
Collapse
Affiliation(s)
- B Fehse
- Clinic for Stem Cell Transplantation, University Medical Centre, Hamburg, Germany.
| | | |
Collapse
|