1
|
Breadner D, Hwang DM, Husereau D, Cheema P, Doucette S, Ellis PM, Kassam S, Leighl N, Maziak DE, Selvarajah S, Sheffield BS, Juergens RA. Implementation of Liquid Biopsy in Non-Small-Cell Lung Cancer: An Ontario Perspective. Curr Oncol 2024; 31:6017-6031. [PMID: 39451753 PMCID: PMC11505603 DOI: 10.3390/curroncol31100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in Canada, with non-small-cell lung cancer (NSCLC) accounting for the majority of cases. Timely access to comprehensive molecular profiling is critical for selecting biomarker-matched targeted therapies, which lead to improved outcomes in advanced NSCLC. Tissue biopsy samples are the gold standard for molecular profiling; however, several challenges can prevent timely and complete molecular profiling from being performed, causing delays in treatment or suboptimal therapy selection. Liquid biopsy offers a minimally invasive method for molecular profiling by analyzing circulating tumour DNA (ctDNA) and RNA (cfRNA) in plasma, potentially overcoming these barriers. This paper discusses the outcomes of a multidisciplinary working group in Ontario, which proposed three eligibility criteria for liquid biopsy reimbursement: (1) insufficient tissue for complete testing or failed tissue biomarker testing; (2) suspected advanced NSCLC where tissue biopsy is not feasible; and (3) high-risk patients who may deteriorate before tissue results are available. The group also addressed considerations for assay selection, implementation, and economic impact. These discussions aim to inform reimbursement and implementation strategies for liquid biopsy in Ontario's public healthcare system, recognizing the need for ongoing evaluation as technology and evidence evolve.
Collapse
Affiliation(s)
- Daniel Breadner
- Verspeeten Family Cancer Centre, London Health Sciences Center, London, ON N6A 5W9, Canada
| | - David M. Hwang
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Don Husereau
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Parneet Cheema
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Peter M. Ellis
- Division of Medical Oncology, Juravinski Cancer Centre, Hamilton, ON L8V 5C2, Canada (R.A.J.)
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shaqil Kassam
- Southlake Stronach Regional Cancer Centre, Newmarket, ON L3Y 2P9, Canada
| | - Natasha Leighl
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Donna E. Maziak
- Department of Thoracic Surgery, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Shamini Selvarajah
- Laboratory Medicine Program, Division of Genome Diagnostics, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Brandon S. Sheffield
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Rosalyn A. Juergens
- Division of Medical Oncology, Juravinski Cancer Centre, Hamilton, ON L8V 5C2, Canada (R.A.J.)
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Ospina AV. Overview of the Role of Liquid Biopsy in Non-small Cell Lung Cancer (NSCLC). Clin Oncol (R Coll Radiol) 2024; 36:e371-e380. [PMID: 39048406 DOI: 10.1016/j.clon.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Solid tumour tissue has traditionally been used for cancer molecular diagnostics. Recently, biomarker assessment in blood or liquid biopsies has become relevant because it allows genotyping in a less invasive and costly manner. In addition, it is a very useful technique in cases with insufficient tumour samples. Recent data have shown that this method can provide the baseline molecular characteristics of the tumour and resistance changes that emerge during cancer treatment. In terms of diagnostic application, the platforms available for clinical use in lung cancer focus on the isolation and detection of circulating DNA (ctDNA) and generally cover a limited number of mutations in genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS) and BRAF, as well as anaplastic lymphoma kinase (ALK) rearrangements. In parallel, there are plasma genotyping platforms based on next-generation sequencing (NGS) techniques, which are much broader in scope, allowing multiple genes to be studied simultaneously in a more efficient manner. More recently, promising research scenarios for liquid biopsy have emerged, such as its utility for early diagnosis and evaluation of minimal residual disease after oncological treatment. In light of these advances, knowledge of the benefits and limitations of liquid biopsy, as well as awareness of emerging information on new indications for this technique in non-small cell lung cancer (NSCLC), are of paramount importance in developing more effective management strategies for patients with this neoplasm.
Collapse
Affiliation(s)
- A V Ospina
- Instituto Investigación Sanitaria Puerta de Hierro - Segovia de Arana (IDIPHISA), Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, C/Manuel de Falla, 1 Majadahonda, Madrid, 28222, Spain.
| |
Collapse
|
3
|
Fasola G, Barducci MC, Tozzi VD, Cavanna L, Cinieri S, Perrone F, Pinto C, Russo A, Sapino A, Grossi F, Aprile G. Implementation of Precision Oncology in the National Healthcare System: A Statement Proposal Endorsed by Italian Scientific Societies. JCO Precis Oncol 2023; 7:e2300166. [PMID: 37944071 PMCID: PMC10645411 DOI: 10.1200/po.23.00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE Precision oncology (PO) promises positive results for patients. To date, in Italy, the effort to implement PO has been made autonomously by regional health institutions in a top-down fashion. This approach is not very efficient and jeopardizes patients' equal access to PO. Similar outcomes have been recorded in other Western countries. We tested a method of collaboration among professionals, scientific societies, and government institutions to facilitate the delivery of PO innovation to patients' bedsides. METHOD We designed an organizational research project on the basis of a bottom-up approach. We started by observing PO-related activities in five health care authorities (HCAs) in one Italian region. We then compared the issues that emerged with those of three additional HCAs in other Italian regions. Using the results of the initial observation and adopting validated multiple-step consensus methods, we finally derived 14 statements that were approved by the four main scientific societies of oncology and pathology at the national level. RESULTS The 14 statements addressed the main issues linked to the implementation of PO in clinical practice. The strong professional consensus advocated for prompt adoption within the national healthcare system. CONCLUSIONS The consensus on the statements that were obtained shows the importance of a synergistic effort among professionals, scientific societies, and health care institutions in defining homogeneous solutions for innovation implementation within the health care system.
Collapse
Affiliation(s)
- Gianpiero Fasola
- Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Maria C. Barducci
- Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Valeria D. Tozzi
- Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Luigi Cavanna
- Piacenza General Hospital, AUSL Piacenza, Piacenza, Italy
- Collegio Italiano dei Primari Oncologi Medici Ospedalieri (CIPOMO), Genova, Italy
| | - Saverio Cinieri
- Complex Medical Oncology Unit, ASL Brindisi Senatore Antonio Perrino Hospital, Brindisi, Italy
- Associazione Italiana Oncologia Medica (AIOM), Milano, Italy
| | - Francesco Perrone
- Associazione Italiana Oncologia Medica (AIOM), Milano, Italy
- Clinical Trials Unit, Istituto Nazionale Tumori-IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Carmine Pinto
- Medical Oncology, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
- Collegio degli Oncologi Medici Universitari (COMU), University of Palermo, Palermo, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Società Italiana di Anatomia Patologica e Citologia Diagnostica (SIAPeC), Milano, Italy
| | | | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| |
Collapse
|
4
|
Maity AP, Gangireddy M, Degen KC, Al-Saleem FH, Bramson J, Ciocca V, Dessain SK, Evans TL. Impact of Simultaneous Circulating Tumor DNA and Tissue Genotyping in the Workup of Stage IV Lung Adenocarcinoma on Quality of Care in an Academic Community Medical Center. JCO Oncol Pract 2023; 19:620-625. [PMID: 37319386 DOI: 10.1200/op.22.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE In patients with metastatic lung adenocarcinoma, evidence-based first-line treatment decisions require analysis of tumors for genomic alterations (GAs). Optimizing the genotyping paradigm may improve the delivery of precision oncology care. Actionable GAs can be identified by analyzing tumor tissue or circulating tumor DNA using liquid biopsy. Consensus guidelines for when to use liquid biopsy have not been established. We evaluated the routine use of liquid biopsy performed simultaneously with tissue testing in patients with newly diagnosed, stage IV lung adenocarcinoma. METHODS We performed a retrospective study comparing patients who underwent tissue genotyping alone (standard biopsy group) with patients who had simultaneous liquid and tissue genotyping (combined biopsy group). We examined the time to reach a final diagnosis, the need for repeat biopsies, and diagnostic accuracy. RESULTS Forty two patients in the combined biopsy group and 78 in the standard biopsy group met the inclusion criteria. The standard group had a mean time to diagnosis of 33.5 days, compared with 20.6 days in the combined group (P < .001 by two-tailed t-test). In the combined group, 14 patients did not have sufficient tissue for molecular analysis (30%); however, in 11 (79%) of these patients, liquid biopsy identified a GA that eliminated the need for a second tissue biopsy. In patients who completed both tests, each test found actionable GAs missed by the other. CONCLUSION Performing liquid biopsy simultaneously with tissue genotyping is feasible in an academic community medical center. Potential advantages of simultaneous liquid and tissue biopsies include shorter time to obtain a definitive molecular diagnosis, reduced need for a repeat biopsy, and improved detection of actionable mutations, although a sequential strategy that saves costs by beginning with a liquid biopsy may be ideal.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott K Dessain
- Lankenau Medical Center, Wynnewood, PA
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - Tracey L Evans
- Lankenau Institute for Medical Research, Wynnewood, PA
- Paoli Hematology Oncology Association, Paoli, PA
| |
Collapse
|
5
|
Lin Z, Li Y, Tang S, Deng Q, Jiang J, Zhou C. Comparative analysis of genomic profiles between tissue-based and plasma-based next-generation sequencing in patients with non-small cell lung cancer. Lung Cancer 2023; 182:107282. [PMID: 37392713 DOI: 10.1016/j.lungcan.2023.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES Genotype-guided personalized therapy has become an essential part of routine clinical care in non-small cell lung cancer (NSCLC) patients. However, small tissue specimens often yield inadequate molecular testing material. Plasma ctDNA-based liquid biopsy is an increasingly common non-invasive alternative to tissue biopsy. This study examined the similarities and differences in the molecular profiling of tissue and plasma samples to provide insight into sample selection in clinical practice. MATERIALS AND METHODS Sequencing data from 190 NSCLC patients who underwent concurrent tissue-based next-generation sequencing (tissue-NGS) and plasma-based NGS (plasma-NGS) using a 168-gene panel were analyzed. RESULTS Tissue-NGS identified genomic alterations in 97.4% (185/190) of the enrolled patients and plasma-NGS identified genomic alterations in 72.1% (137/190) of the enrolled patients. Considering all NSCLC guideline-recommended biomarkers in the entire cohort of 190 cases, 81 patients had positive concordant mutations detected in both tissue and plasma samples, while 69 patients had no predefined alterations detected in either tissue or plasma samples. Additional mutations were found in the tissues of 34 patients and the plasma of six patients. The overall concordance rate between tissue and plasma samples was 78.9% (150/190). The tissue-NGS and plasma-NGS sensitivities were 95.0% and 71.9%, respectively. In the 137 patients with detectable ctDNA in plasma samples, the concordance rate between tissue and plasma samples reached 91.2%, and the sensitivity of plasma-NGS reached 93.5%. CONCLUSION Our findings indicate that plasma-NGS is less capable of detecting genetic alterations than tissue-NGS, especially for copy number variations and gene fusions. Tissue-NGS remains the preferred method for evaluating the molecular profile of NSCLC patients when tumor tissue is available. We suggest that the concurrent use of liquid biopsy and tissue biopsy is the optimal approach in clinical practice; alternatively, plasma can be used as substitute material when tissue is unavailable.
Collapse
Affiliation(s)
- Zeyun Lin
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Li
- Department of Clinical Laboratory, Dongguan Eighth People's Hospital, Dongguan, China
| | - Shiqi Tang
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuhua Deng
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juhong Jiang
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Chengzhi Zhou
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Bamba-Funck J, Fabre EE, Kambouchner M, Schischmanoff O. Performance Characteristics of Oncomine Focus Assay for Theranostic Analysis of Solid Tumors, A (21-Months) Real-Life Study. Diagnostics (Basel) 2023; 13:diagnostics13050937. [PMID: 36900081 PMCID: PMC10001101 DOI: 10.3390/diagnostics13050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Next generation sequencing analysis is crucial for therapeutic decision in various solid tumor contexts. The sequencing method must remain accurate and robust throughout the instrument lifespan allowing the biological validation of patients' results. This study aims to evaluate the long-term sequencing performances of the Oncomine Focus assay kit allowing theranostic DNA and RNA variants detection on the Ion S5XL instrument. We evaluated the sequencing performances of 73 consecutive chips over a 21-month period and detailed the sequencing data obtained from both quality controls and clinical samples. The metrics describing sequencing quality remained stable throughout the study. We showed that an average of 11 × 106 (±0.3 × 106) reads were obtained using a 520 chip leading to an average of 6.0 × 105 (±2.6 × 105) mapped reads per sample. Of 400 consecutive samples, 95.8 ± 16% of amplicons reached the depth threshold of 500X. Slight modifications of the bioinformatics workflow improved DNA analytical sensitivity and allowed the systematic detection of expected SNV, indel, CNV, and RNA alterations in quality controls samples. The low inter-run variability of DNA and RNA-even at low variant allelic fraction, amplification factor, or reads counts-indicated that our method was adapted to clinical practice. The analysis of 429 clinical DNA samples indicated that the modified bioinformatics workflow allowed detection of 353 DNA variants and 88 gene amplifications. RNA analysis of 55 clinical samples revealed 7 alterations. This is the first study showing the long-term robustness of the Oncomine Focus assay in clinical routine practice.
Collapse
Affiliation(s)
- Jessica Bamba-Funck
- Laboratory of Biochemistry, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique—Hôpitaux de Paris, F-93000 Bobigny, France
- Laboratory for Vascular Translational Science, LVTS, UMR INSERM 1148, UFR SMBH, Université Sorbonne Paris Nord, F-93000 Bobigny, France
- Correspondence: (J.B.-F.); (O.S.); Tel.: +33-1-4895-7827 (O.S.)
| | - Emmanuelle E. Fabre
- Laboratory of Biochemistry, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique—Hôpitaux de Paris, F-93000 Bobigny, France
- Signaling, Microenvironment and B Cell Malignancies, SIMEL, UMR INSERM U978, UFR SMBH, Université Sorbonne Paris Nord, 8, F-93000 Bobigny, France
| | - Marianne Kambouchner
- Department of Pathology, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique—Hôpitaux de Paris, F-93000 Bobigny, France
| | - Olivier Schischmanoff
- Laboratory of Biochemistry, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique—Hôpitaux de Paris, F-93000 Bobigny, France
- Signaling, Microenvironment and B Cell Malignancies, SIMEL, UMR INSERM U978, UFR SMBH, Université Sorbonne Paris Nord, 8, F-93000 Bobigny, France
- Correspondence: (J.B.-F.); (O.S.); Tel.: +33-1-4895-7827 (O.S.)
| |
Collapse
|
7
|
Lai J, Chen W, Zhao A, Huang J. Determination of a DNA repair-related gene signature with potential implications for prognosis and therapeutic response in pancreatic adenocarcinoma. Front Oncol 2022; 12:939891. [PMID: 36353555 PMCID: PMC9638008 DOI: 10.3389/fonc.2022.939891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the leading causes of cancer death worldwide. Alterations in DNA repair-related genes (DRGs) are observed in a variety of cancers and have been shown to affect the development and treatment of cancers. The aim of this study was to develop a DRG-related signature for predicting prognosis and therapeutic response in PAAD. Methods We constructed a DRG signature using least absolute shrinkage and selection operator (LASSO) Cox regression analysis in the TCGA training set. GEO datasets were used as the validation set. A predictive nomogram was constructed based on multivariate Cox regression. Calibration curve and decision curve analysis (DCA) were applied to validate the performance of the nomogram. The CIBERSORT and ssGSEA algorithms were utilized to explore the relationship between the prognostic signature and immune cell infiltration. The pRRophetic algorithm was used to estimate sensitivity to chemotherapeutic agents. The CellMiner database and PAAD cell lines were used to investigate the relationship between DRG expression and therapeutic response. Results We developed a DRG signature consisting of three DRGs (RECQL, POLQ, and RAD17) that can predict prognosis in PAAD patients. A prognostic nomogram combining the risk score and clinical factors was developed for prognostic prediction. The DCA curve and the calibration curve demonstrated that the nomogram has a higher net benefit than the risk score and TNM staging system. Immune infiltration analysis demonstrated that the risk score was positively correlated with the proportions of activated NK cells and monocytes. Drug sensitivity analysis indicated that the signature has potential predictive value for chemotherapy. Analyses utilizing the CellMiner database showed that RAD17 expression is correlated with oxaliplatin. The dynamic changes in three DRGs in response to oxaliplatin were examined by RT-qPCR, and the results show that RAD17 is upregulated in response to oxaliplatin in PAAD cell lines. Conclusion We constructed and validated a novel DRG signature for prediction of the prognosis and drug sensitivity of patients with PAAD. Our study provides a theoretical basis for further unraveling the molecular pathogenesis of PAAD and helps clinicians tailor systemic therapies within the framework of individualized treatment.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weijie Chen
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Aiyue Zhao
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingshan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
8
|
Fielding D, Dalley AJ, Singh M, Nandakumar L, Nones K, Lakis V, Chittoory H, Ferguson K, Bashirzadeh F, Bint M, Pahoff C, Son JH, Hodgson A, Sharma S, Godbolt D, Coleman K, Whitfield L, Waddell N, Lakhani SR, Hartel G, Simpson PT. Prospective Optimization of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Lymph Node Assessment for Lung Cancer: Three Needle Agitations Are Noninferior to 10 Agitations for Adequate Tumor Cell and DNA Yield. JTO Clin Res Rep 2022; 3:100403. [PMID: 36147610 PMCID: PMC9486562 DOI: 10.1016/j.jtocrr.2022.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 10/30/2022] Open
Abstract
Introduction Methods Results Conclusions
Collapse
|
9
|
Yang L, Jin WQ, Tang XL, Zhang S, Ma R, Zhao DQ, Sun LW. Ginseng-derived nanoparticles inhibit lung cancer cell epithelial mesenchymal transition by repressing pentose phosphate pathway activity. Front Oncol 2022; 12:942020. [PMID: 36059624 PMCID: PMC9428604 DOI: 10.3389/fonc.2022.942020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
It is unclear whether ginseng-derived nanoparticles (GDNPs) can prevent tumor cell epithelial-mesenchymal transition (EMT). Here, we describe typical characteristics of GDNPs and possible underlying mechanisms for GDNP antitumor activities. First, GDNPs particle sizes and morphology were determined using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), respectively, while cellular uptake of PKH67-labeled GDNPs was also assessed. Next, we evaluated GDNPs antitumor effects by determining whether GDNPs inhibited proliferation and migration of five tumor cell lines derived from different cell types. The results indicated that GDNPs most significantly inhibited proliferation and migration of lung cancer-derived tumor cells (A549, NCI-H1299). Moreover, GDNPs treatment also inhibited cell migration, invasion, clonal formation, and adhesion tube formation ability and reduced expression of EMT-related markers in A549 and NCI-H1299 cells in a dose-dependent manner. Meanwhile, Kaplan-Meier analysis of microarray data revealed that high-level thymidine phosphorylase (TP) production, which is associated with poor lung cancer prognosis, was inhibited by GDNPs treatment, as reflected by decreased secretion of overexpressed TP and downregulation of TP mRNA-level expression. In addition, proteomic analysis results indicated that GDNPs affected pentose phosphate pathway (PPP) activity, with ELISA results confirming that GDNPs significantly reduced levels of PPP metabolic intermediates. Results of this study also demonstrated that GDNPs-induced downregulation of TP expression led to PPP pathway inhibition and repression of lung cancer cell metastasis, warranting further studies of nano-drugs as a new and promising class of anti-cancer drugs.
Collapse
Affiliation(s)
- Lan Yang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wen-qi Jin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xiao-lei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Shuai Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Da-qing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Li-wei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| |
Collapse
|
10
|
Liquid biopsy and non-small cell lung cancer: are we looking at the tip of the iceberg? Br J Cancer 2022; 127:383-393. [PMID: 35264788 PMCID: PMC9345955 DOI: 10.1038/s41416-022-01777-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
The possibility to analyse the tumour genetic material shed in the blood is undoubtedly one of the main achievements of translational research in the latest years. In the modern clinical management of advanced non-small cell lung cancer, molecular characterisation plays an essential role. In parallel, immunotherapy is widely employed, but reliable predictive markers are not available yet. Liquid biopsy has the potential to face the two issues and to increase its role in advanced NSCLC in the next future. The aim of this review is to summarise the main clinical applications of liquid biopsy in advanced non-small cell lung cancer, underlining both its potential and limitations from a clinically driven perspective.
Collapse
|
11
|
Froelich MF, Capoluongo E, Kovacs Z, Patton SJ, Lianidou ES, Haselmann V. The value proposition of integrative diagnostics for (early) detection of cancer. On behalf of the EFLM interdisciplinary Task and Finish Group "CNAPS/CTC for early detection of cancer". Clin Chem Lab Med 2022; 60:821-829. [PMID: 35218176 DOI: 10.1515/cclm-2022-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Disruptive imaging and laboratory technologies can improve clinical decision processes and outcomes in oncology. However, certain obstacles must be overcome before these technologies can be fully implemented as part of the standard for care. An integrative diagnostic approach represents a unique opportunity to unleash the full diagnostic potential and paves the way towards personalized cancer diagnostics. To meet this demand, an interdisciplinary Task Force of the EFLM was initiated as a consequence of an EFLM/ESR during the CELME 2019 meeting in order to evaluate the clinical value of CNAPS/CTC (circulating nucleic acids in plasma and serum/circulating tumor cells) in early detection of cancer. Here, an overview of current disruptive techniques, their clinical implications and potential value of an integrative diagnostic approach is provided. Furthermore, requirements such as the establishment of diagnostic tumor boards, development of adequate software solutions and a change of mindset towards a new generation of diagnosticians providing actionable health information are presented. This development has the potential to elevate the position and clinical recognition of diagnosticians.
Collapse
Affiliation(s)
- Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Zsolt Kovacs
- Department of Pathology, Clinical County Emergency Hospital, Targu-Mures, Romania
| | | | - Evi S Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| | - Verena Haselmann
- Medical Faculty Mannheim of the University of Heidelberg, Institute of Clinical Chemistry, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
12
|
Predicting EGFR mutation status in lung adenocarcinoma presenting as ground-glass opacity: utilizing radiomics model in clinical translation. Eur Radiol 2022; 32:5869-5879. [DOI: 10.1007/s00330-022-08673-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/23/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
|
13
|
Haselmann V, Hedtke M, Neumaier M. Liquid Profiling for Cancer Patient Stratification in Precision Medicine—Current Status and Challenges for Successful Implementation in Standard Care. Diagnostics (Basel) 2022; 12:diagnostics12030748. [PMID: 35328301 PMCID: PMC8947441 DOI: 10.3390/diagnostics12030748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor DNA (ctDNA), accurately described by the term liquid profiling (LP), enables real-time assessment of the tumor mutational profile as a minimally invasive test and has therefore rapidly gained traction, particular for the management of cancer patients. By LP, tumor-specific genetic alterations can be determined as part of companion diagnostics to guide selection of appropriate targeted therapeutics. Because LP facilitates longitudinal monitoring of cancer patients, it can be used to detect acquired resistant mechanisms or as a personalized biomarker for earlier detection of disease recurrence, among other applications. However, LP is not yet integrated into routine care to the extent that might be expected. This is due to the lack of harmonization and standardization of preanalytical and analytical workflows, the lack of proper quality controls, limited evidence of its clinical utility, heterogeneous study results, the uncertainty of clinicians regarding the value and appropriate indications for LP and its interpretation, and finally, the lack of reimbursement for most LP tests. In this review, the value proposition of LP for cancer patient management and treatment optimization, the current status of implementation in standard care, and the main challenges that need to be overcome are discussed in detail.
Collapse
|
14
|
Clinical Impact of High Throughput Sequencing on Liquid Biopsy in Advanced Solid Cancer. Curr Oncol 2022; 29:1902-1918. [PMID: 35323355 PMCID: PMC8947301 DOI: 10.3390/curroncol29030155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Cancer therapies targeting actionable molecular alterations (AMA) have developed, but the clinical routine impact of high-throughput molecular profiling remains unclear. We present a monocentric experience of molecular profiling based on liquid biopsy in patients with cancer. Methods: Patients included had solid cancer and underwent cfDNA genomic profiling with FoudationOne Liquid CDx (F1LCDx) test, analyzing 324 genes. Primary endpoint was to describe patients with an AMA for whom clinical decisions were impacted by F1LCDx test results. Results: 191 patients were included, mostly with lung cancer (46%). An AMA was found in 52%. The most common molecular alterations were: TP53 (52%), KRAS (14%) and DNMT3 (11%). The most common AMA were: CHEK2 (10%), PIK3CA (9%), ATM (7%). There was no difference in progression-free survival (2.66 months vs. 3.81 months, p = 0.17), overall survival (5.3 months vs. 7.1 months, p = 0.64), or PFS2/PFS1 ratio ≥ 1.3 (20% vs. 24%, p = 0.72) between patients receiving a molecularly matched therapy (MMT) or a non-MMT, respectively. Patients with a MMT had an overall response rate of 19% and a disease control of 32%. Conclusions: Routine cfDNA molecular profiling is feasible and can lead to the access of targeted therapies. However, no notable benefit in patient’s outcomes was shown in this unselected pan-cancer study.
Collapse
|
15
|
The storm of NGS in NSCLC diagnostic-therapeutic pathway: How to sun the real clinical practice. Crit Rev Oncol Hematol 2021; 169:103561. [PMID: 34856311 DOI: 10.1016/j.critrevonc.2021.103561] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
The increasing number of approved drugs along with next generation sequencing (NGS) technologies look out as potential revolution of biomolecular characterization of non-small-cell lung cancer (NSCLC). Nevertheless, several aspects impact on success rate of NGS in clinical practice: a multidisciplinary approach and thorough knowledge of strengths and limits of each technologic diagnostic tool are required. Crucial preliminary step is the selection of the best available sample before testing, aware of clinical condition and setting of disease. Genomic data should be than integrated in the clinical context and matched with available therapeutic options; Molecular Tumor Boards (MTB) are worldwide emerging interdisciplinary groups implemented to transfer the impact of precision medicine in clinical practice. In order to guarantee equity in treatment, these considerations should find their application widely and rapidly. Aim of this review is offering an overview of emerging biomarkers, relative upcoming targeted drugs, and new diagnostic chances with an authors' perspective about a real-life diagnostic-therapeutic algorithm useful for daily clinical practice.
Collapse
|
16
|
Saarenheimo J, Andersen H, Eigeliene N, Jekunen A. Gene-Guided Treatment Decision-Making in Non-Small Cell Lung Cancer - A Systematic Review. Front Oncol 2021; 11:754427. [PMID: 34712614 PMCID: PMC8546351 DOI: 10.3389/fonc.2021.754427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Decision-making in cancer treatment is part of clinicians’ everyday work, and it is especially challenging in non-small cell lung cancer (NSCLC) patients, for whom decisions are clearly dependent on gene alterations or the lack of them. The multimodality of treatments, involvement of gene alterations in defining systemic cancer therapies, and heterogeneous nature of tumors and their responsiveness provide extra challenges. This article reviews the existing literature to 2021 with extra effort to explore the role of genes and gene-driven therapies as part of decision-making. The process and elements in this decision-making participation are recognized and discussed comprehensively. Genetic health literacy aids are provided as a part of the review. Our systematic review, data extraction and analysis found that with current methods and broad gene panels, patients benefit from early molecular testing of liquid biopsy samples. An estimated 79% of liquid biopsy samples showed somatic mutations based on 8 original studies included in the systematic review. When both liquid biopsy samples and tissue samples are evaluated, the sensitivity to detect targetable mutations in NSCLC increases. We recommend early testing with liquid biopsy. Additional effort is needed for the logistics of obtaining and evaluating samples, and tissue samples should be saved and stored for tests that are not possible from liquid biopsy.
Collapse
Affiliation(s)
| | - Heidi Andersen
- Department of Oncology, Vaasa Central Hospital, Vaasa, Finland.,Tema Cancer, Karolinska University Hospital, Stockholm, Sweden.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Natalja Eigeliene
- Department of Oncology, Vaasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, Turku University, Turku, Finland
| | - Antti Jekunen
- Department of Oncology, Vaasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, Turku University, Turku, Finland
| |
Collapse
|
17
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|
18
|
Hofman P. Next-Generation Sequencing with Liquid Biopsies from Treatment-Naïve Non-Small Cell Lung Carcinoma Patients. Cancers (Basel) 2021; 13:2049. [PMID: 33922637 PMCID: PMC8122958 DOI: 10.3390/cancers13092049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, the liquid biopsy (LB), a non-invasive and easy to repeat approach, has started to compete with the tissue biopsy (TB) for detection of targets for administration of therapeutic strategies for patients with advanced stages of lung cancer at tumor progression. A LB at diagnosis of late stage non-small cell lung carcinoma (NSCLC) is also being performed. It may be asked if a LB can be complementary (according to the clinical presentation or systematics) or even an alternative to a TB for treatment-naïve advanced NSCLC patients. Nucleic acid analysis with a TB by next-generation sequencing (NGS) is gradually replacing targeted sequencing methods for assessment of genomic alterations in lung cancer patients with tumor progression, but also at baseline. However, LB is still not often used in daily practice for NGS. This review addresses different aspects relating to the use of LB for NGS at diagnosis in advanced NSCLC, including its advantages and limitations.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte d’Azur, CHU Nice, FHU OncoAge, Pasteur Hospital, 30 avenue de la voie romaine, BP69, CEDEX 01, 06001 Nice, France; ; Tel.: +33-4-92-03-88-55 or +33-4-92-03-87-49; Fax: +33-4-92-88-50
- Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, CHU Nice, FHU OncoAge, 06001 Nice, France
| |
Collapse
|
19
|
Dealing with NSCLC EGFR mutation testing and treatment: A comprehensive review with an Italian real-world perspective. Crit Rev Oncol Hematol 2021; 160:103300. [PMID: 33744362 DOI: 10.1016/j.critrevonc.2021.103300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/12/2023] Open
Abstract
Since their discovery, relevant efforts have been made to optimize the detection approaches to EGFR mutations as well as the clinical management of EGFR-mutated NSCLC. The recent shift from single gene testing to novel comprehensive detection platforms along with the development of new generation tyrosine kinase inhibitors, targeting both common and uncommon EGFR-mutations, is leading to a progressive increase in the number of patients who may benefit from targeted approaches, with subsequent impact on their long-term survival and quality of life. However, a prompt and adequate implementation of the most recent diagnostic and treatment advances in the routine practice often remains critical to be specifically addressed. In this review we provide a complete and updated overview of the different detection platforms and therapeutic options currently available for the clinical management of advanced EGFR-positive NSCLC, summarizing scientific evidence and describing molecular testing as well as treatment practice in the real-word scenario.
Collapse
|