1
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
2
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
3
|
Impact of HVT Vaccination on Splenic miRNA Expression in Marek's Disease Virus Infections. Genes (Basel) 2019; 10:genes10020115. [PMID: 30764490 PMCID: PMC6409792 DOI: 10.3390/genes10020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Marek’s Disease is a lymphoproliferative disease of chickens caused by Marek’s Disease Virus. Similar to other herpesviruses, Marek’s Disease Virus (MDV) encodes its own small non-coding regulatory RNAs termed microRNAs (miRNAs). We previously found that the expression profile of these viral miRNAs is affected by vaccination with Herpesvirus of Turkeys (HVT). To further characterize miRNA-mediated gene regulation in MDV infections, in the current study we examine the impact of HVT vaccination on cellular miRNA expression in MDV-infected specific-pathogen-free (SPF) chickens. We used small RNA-seq to identify 24 cellular miRNAs that exhibited altered splenic expression in MDV infected chickens (42 dpi) compared to age-matched uninfected birds. We then used Real Time-quantitative PCR (RT-qPCR) to develop expression profiles of a select group of these host miRNAs in chickens receiving the HVT vaccine and in vaccinated chickens subsequently infected with MDV. As was seen with viral miRNA, host miRNAs had unique splenic expression profiles between chickens infected with HVT, MDV, or co-infected birds. We also discovered a group of transcription factors, using a yeast one-hybrid screen, which regulates immune responses and cell growth pathways and also likely regulates the expression of these cellular miRNAs. Overall, this study suggests cellular miRNAs are likely a critical component of both protection from and progression of Marek’s Disease.
Collapse
|
4
|
Fang Y, Zhou Y, Zhang Y, He L, Xue C, Cao Y. Design of miRNA sponges for MDV-1 as a therapeutic strategy against lymphomas. Oncotarget 2017; 9:3842-3852. [PMID: 29423087 PMCID: PMC5790504 DOI: 10.18632/oncotarget.23379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023] Open
Abstract
Lymphomas are solid-type tumors containing lymphoid cells. Some of latent herpesvirus infections established in B and/or T-lymphocytes could result in the formation of lymphomas. Marek's disease virus serotype 1 (MDV-1) is an avian herpes virus causing to lymphoproliferative tumors in birds, known as Marek’s disease (MD). MD has often been used as an ideal biological model for studying the pathogenesis of lymphoma diseases caused by viruses. Therefore, we used it as a research subject to study the effect of miRNA sponges on its tumorigenicity, and to develop the theoretical basis for a new anti-tumor small molecule. The miRNA sponges designed in this study specifically bind to and degrade the miRNAs of meq gene cluster of MDV-1, including miR-M2-3p, miR-M3-5p, miR-M5-3p, miR-M9-5p and miR-M12-3p.qPCR results showed that the knockdown efficiency was 85.03%, 74.97%, 47.06%, 75.33% and 62.55%, respectively. EDU staining and CCK-8 results showed that miRNA sponges inhibited the proliferation of MDV-1 transformed MSB-1 cells in vitro, and the proliferation rate of miRNA sponges-treated cells was about 50% of the control group. DAPI staining and Annxin V-FITC/PI double staining showed that miRNA sponges induced apoptosis in MSB-1 cells, and the apoptotic rate was increased by about 27.87% compared with the control group. The results of transwell showed that miRNA sponges could inhibit the invasion of MSB-1 cells in vitro, and the inhibitory rate was about 64.52%. The soft agar assay showed that miRNA sponges could inhibit the tumorigenic ability of MSB-1 cells in vitro, and the inhibitory rate was about 66.44%.The 60-days animal study showed that miRNA sponges could alleviate the growth inhibition of MSB-1 cells (about 14.78%) and reduce the mortality (about 16.00%). In addition, the tumor formation rate was 0 (8–12% in the control group).This study suggests that miRNA sponges can serve as an effective anti-tumor small molecule for the tumors caused by herpesvirus, with potential clinical implications.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuqi Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liangliang He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Han B, Lian L, Li X, Zhao C, Qu L, Liu C, Song J, Yang N. Chicken gga-miR-130a targets HOXA3 and MDFIC and inhibits Marek's disease lymphoma cell proliferation and migration. Mol Biol Rep 2016; 43:667-76. [PMID: 27178573 DOI: 10.1007/s11033-016-4002-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
Marek's disease (MD) is an infectious disease of chickens caused by MD virus (MDV), which is a herpesvirus that initiates tumor formation. Studies have indicated that microRNAs (miRNAs) are linked with the development of cancers or tumors. Previously, gga-miR-130a was discovered downregulated in MDV-infected tissues. Here, we aimed to explore the further function of gga-miR-130a in MD. The expression of gga-miR-130a in MDV-infected and uninfected spleens was detected by quantitative real-time PCR (qRT-PCR). Subsequently, proliferation and migration assays of MDV-transformed lymphoid cells (MSB1) were carried out by transfecting gga-miR-130a. The target genes of gga-miR-130a were predicted using TargetScan and miRDB and clustered through Gene Ontology analysis. The target genes were validated by western blot, qRT-PCR, and a dual luciferase reporter assay. Our results show that the expression of gga-miR-130a was reduced in MDV-infected spleens. Gga-miR-130a showed an inhibitory effect on MSB1 cell proliferation and migration. Two target genes, homeobox A3 (HOXA3) and MyoD family inhibitor domain containing (MDFIC), were predicted and clustered to cell proliferation. Results indicate that gga-miR-130a regulates HOXA3 and MDFIC at the protein level but not at the mRNA level. Moreover, the gga-miR-130a binding sites of two target genes have been confirmed. We conclude that gga-miR-130a can arrest MSB1 cell proliferation and migration, and target HOXA3 and MDFIC, which are both involved in the regulation of cell proliferation. Collectively, gga-miR-130a plays a critical role in the tumorigenesis associated with chicken MD.
Collapse
Affiliation(s)
- Bo Han
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunfang Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Ning Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Chicken gga-miR-103-3p Targets CCNE1 and TFDP2 and Inhibits MDCC-MSB1 Cell Migration. G3-GENES GENOMES GENETICS 2016; 6:1277-85. [PMID: 26935418 PMCID: PMC4856079 DOI: 10.1534/g3.116.028498] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marek’s disease (MD) is a highly contagious viral neoplastic disease caused by Marek’s disease virus (MDV), which can lead to huge economic losses in the poultry industry. Recently, microRNAs (miRNAs) have been found in various cancers and tumors. In recent years, 994 mature miRNAs have been identified through deep sequencing in chickens, but only a few miRNAs have been investigated further in terms of their function. Previously, gga-miR-103-3p was found downregulated in MDV-infected samples by using Solexa deep sequencing. In this study, we further verified the expression of gga-miR-103-3p among MDV-infected spleen, MD lymphoma from liver, noninfected spleen, and noninfected liver, by qPCR. The results showed that the expression of gga-miR-103-3p was decreased in MDV-infected tissues, which was consistent with our previous study. Furthermore, two target genes of gga-miR-103-3p, cyclin E1 (CCNE1) and transcription factor Dp-2 (E2F dimerization partner 2) (TFDP2), were predicted and validated by luciferase reporter assay, qPCR, and western blot analysis. The results suggested that CCNE1 and TFDP2 are direct targets of gga-miR-103-3p in chickens. Subsequent cell proliferation and migration assay showed that gga-miR-103-3p suppressed MDCC-MSB1 migration, but did not obviously modulate MDCC-MSB1 cell proliferation. In conclusion, gga-miR-103-3p targets the CCNE1 and TFDP2 genes, and suppresses cell migration, which indicates that it might play an important role in MD tumor transformation.
Collapse
|
7
|
Hu X, Zou H, Qin A, Qian K, Shao H, Ye J. Activation of Toll-like receptor 3 inhibits Marek's disease virus infection in chicken embryo fibroblast cells. Arch Virol 2015; 161:521-8. [PMID: 26597188 DOI: 10.1007/s00705-015-2674-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/03/2015] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 3 (TLR3) is a critical component of the innate immune system against viral infection and controls the activation of adaptive immunity. The role of TLR3 in Marek's disease virus (MDV) infection is not clear. In this study, we found that the abundance of TLR3 mRNA was significantly higher in chicken embryo fibroblast cells (CEF) infected with MDV than in a control group. Activated TLR3 signaling via TLR3 ligand stimulation inhibited replication of the RB1B strain of MDV in CEF cells. In contrast, CEF cells transfected with TLR3 siRNA promoted RB1B infection and replication. However, treatment with other TLR ligands, whether stimulatory (LPS, imiquimod and CpG) or inhibitory (TLR2/4 inhibitor and/or MyD88 inhibitor), had little effect on RB1B infection and replication. In addition, we found that the expression trend of TLR3 mRNA in RB1B-infected CEF cells was similar to that of mdv1-mir-M4-5p (a functional ortholog of oncogenic miR-155 encoded by MDV). Inconsistent with this, the TLR3 protein level was sharply reduced in RB1B-infected CEF cells at 96 hpi, while there was an at least 200-fold increase in miR-M4-5p at the same time point. Additionally, CEF cells transfected with an mdv1-mir-M4-5p mimic promoted RB1B infection and replication, while an mdv1-mir-M4-5p inhibitor inhibited RB1B infection and replication. Similar results were observed in CEF cells transfected with a gga-miR-155 mimic or inhibitor. These findings suggest that TLR3 and MDV-encoded miRNAs might be involved in MDV infection.
Collapse
Affiliation(s)
- Xuming Hu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Haitao Zou
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
8
|
Qureshi A, Thakur N, Monga I, Thakur A, Kumar M. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau103. [PMID: 25380780 PMCID: PMC4224276 DOI: 10.1093/database/bau103] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host–virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ‘VIRmiRNA’ and 7283 of their target genes in ‘VIRmiRtar’. Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ‘AVIRmir’. The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Nishant Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Isha Monga
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Anamika Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
9
|
Spatz SJ, Volkening JD, Ross TA. Molecular characterization of the complete genome of falconid herpesvirus strain S-18. Virus Res 2014; 188:109-21. [PMID: 24685675 DOI: 10.1016/j.virusres.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Falconid herpesvirus type 1 (FaHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FaHV-1 has been determined using Illumina MiSeq sequencing. The genome is 204,054 nucleotides in length and has a class E organization. The genome encodes approximately 130 putative protein-coding genes, of which 70 are orthologs of conserved alphaherpesvirus and Mardivirus proteins. Three FaHV-1 genes (UL3.5, UL44.5 and CIRC) were identified that encode protein homologues unique to Mardivirus and Varicellovirus. The genome also encodes homologues to the Mardivirus genes LORF2, LORF3, LORF4, LORF5, SORF3 and SORF4. An opal mutation resulting in premature termination was identified in the FaHV-1 UL43 gene. Phylogenetically, FaHV-1 resides in a monophyletic group with the other Mardiviruses but, along with anatid herpesvirus 1, represents a more distant divergence from the rest of the Mardivirus genus.
Collapse
Affiliation(s)
- Stephen J Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | | | - Teresa A Ross
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
10
|
Marek's disease virus may interfere with T cell immunity by TLR3 signals. Vet Res Commun 2014; 38:149-56. [PMID: 24585377 DOI: 10.1007/s11259-014-9598-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
Marek's disease virus (MDV) is a highly oncogenic alpha-herpesvirus that causes T cell immune suppression and malignant lymphomas in chickens. Toll-like receptor (TLR) plays a dominant role in antiviral T cell immunity. However, it is unclear whether MDV induced T cell immunity is associated with TLR-mediated immunity. In this study, the expression of 28 host genes that are involved in TLR-mediated immunity and MHC-medicated T cell immunity was evaluated in chicken thymus at 7, 14, 21 and 28 days post-infection (dpi). Our results demonstrated that 24 host immune-related genes were upregulated during MDV infection at 7 dpi; however, the expression of most of these genes decreased at 21 and 28 dpi. Notably, a positive correlation was found between the down-regulation of CD4, CD8 and TLR3 signals but not the MyD88-dependent TLR pathway. The present study expanded our knowledge of host immune responses against MDV infection and our results might provide a clue that MDV may interfere with T cell immune response through TLR3 signals.
Collapse
|