1
|
Yacoub E, Baby V, Sirand-Pugnet P, Arfi Y, Mardassi H, Blanchard A, Chibani S, Ben Abdelmoumen Mardassi B. A sweeping view of avian mycoplasmas biology drawn from comparative genomic analyses. BMC Genomics 2025; 26:24. [PMID: 39789465 PMCID: PMC11720521 DOI: 10.1186/s12864-024-11201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Avian mycoplasmas are small bacteria associated with several pathogenic conditions in many wild and poultry bird species. Extensive genomic data are available for many avian mycoplasmas, yet no comparative studies focusing on this group of mycoplasmas have been undertaken so far. RESULTS Here, based on the comparison of forty avian mycoplasma genomes belonging to ten different species, we provide insightful information on the phylogeny, pan/core genome, energetic metabolism, and virulence of these avian pathogens. Analyses disclosed considerable inter- and intra-species genomic variabilities, with genome sizes that can vary by twice as much. Phylogenetic analysis based on concatenated orthologous genes revealed that avian mycoplasmas fell into either Hominis or Pneumoniae groups within the Mollicutes and could split into various clusters. No host co-evolution of avian mycoplasmas can be inferred from the proposed phylogenetic scheme. With 3,237 different gene clusters, the avian mycoplasma group under study proved diverse enough to have an open pan genome. However, a set of 150 gene clusters was found to be shared between all avian mycoplasmas, which is likely encoding essential functions. Comparison of energy metabolism pathways showed that avian mycoplasmas rely on various sources of energy. Superposition between phylogenetic and energy metabolism groups revealed that the glycolytic mycoplasmas belong to two distinct phylogenetic groups (Hominis and Pneumoniae), while all the arginine-utilizing mycoplasmas belong only to Hominis group. This can stand for different evolutionary strategies followed by avian mycoplasmas and further emphasizes the diversity within this group. Virulence determinants survey showed that the involved gene arsenals vary significantly within and between species, and could even be found in species often reported apathogenic. Immunoglobulin-blocking proteins were detected in almost all avian mycoplasmas. Although these systems are not exclusive to this group, they seem to present some particular features making them unique among mycoplasmas. CONCLUSION This comparative genomic study uncovered the significant variable nature of avian mycoplasmas, furthering our knowledge on their biological attributes and evoking new hallmarks.
Collapse
Affiliation(s)
- Elhem Yacoub
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Vincent Baby
- Centre de Diagnostic Vétérinaire de L'Université de Montréal (CDVUM), Faculty of Veterinary Medecine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Yonathan Arfi
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alain Blanchard
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Salim Chibani
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Boutheina Ben Abdelmoumen Mardassi
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
2
|
Bao S, Ding X, Yu S, Xing X, Ding C. Characterization of pyruvate dehydrogenase complex E1 alpha and beta subunits of Mycoplasma synoviae. Microb Pathog 2021; 155:104851. [PMID: 33794298 DOI: 10.1016/j.micpath.2021.104851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 01/24/2023]
Abstract
Mycoplasma synoviae (MS) is an important pathogen which causes huge economic losses to the poultry industry worldwide, and research on MS can provide the foundation for diagnosis, prevention, and treatment of MS infection. In this study, primers designed based on the sequences of pyruvate dehydrogenase complex (PDC) E1 alpha and beta subunit genes (pdhA and pdhB, respectively) of MS 53 strain(AE017245.1) in GenBank were used to amplify the pdhA and pdhB genes of MS WVU1853 strain through PCR. Subsequently, the prokaryotic expression vectors pET-28a(+)-pdhA and pET-28a(+)-pdhB were constructed and expressed in Escherichia coli BL21(DE3) cells. The recombinant proteins rMSPDHA and rMSPDHB were purified, and anti-rMSPDHA and anti-rMSPDHB sera were prepared by immunizing rabbits, respectively. Subcellular localization of PDHA and PDHB in MS cells, binding activity of rMSPDHA and rMSPDHB to chicken plasminogen (Plg) and human fibronectin (Fn), complement-dependent mycoplasmacidal assays, and adherence and adherence inhibition assays were accomplished. The results showed that PDHA and PDHB were distributed both on the surface membrane and within soluble cytosolic fractions of MS cells. The rMSPDHA and rMSPDHB presented binding activity with chicken Plg and human Fn. The rabbit anti-rMSPDHA and anti-rMSPDHB sera had distinct mycoplasmacidal efficacy in the presence of guinea pig complement, and the adherence of MS to DF-1 cells pretreated with Plg was effectively inhibited by treatment with anti-rMSPDHA or anti-rMSPDHB sera. These findings indicated that surface-associated MSPDHA and MSPDHB were adhesion-related factors of MS and that the binding between MSPDHA/MSPDHB and Plg/Fn contributed to MS adhesion to DF-1 cells.
Collapse
Affiliation(s)
- Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou, 730070, PR China.
| | - Xiaoqin Ding
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou, 730070, PR China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang District, Shanghai, 200241, PR China.
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou, 730070, PR China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang District, Shanghai, 200241, PR China.
| |
Collapse
|
3
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
4
|
Vizarraga D, Torres-Puig S, Aparicio D, Pich OQ. The Sialoglycan Binding Adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae. Trends Microbiol 2021; 29:477-481. [PMID: 33593698 DOI: 10.1016/j.tim.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
Mycoplasma genitalium (Mge) and Mycoplasma pneumoniae (Mpn) are two human pathogens associated with urogenital and respiratory tract infections, respectively. The recent elucidation of the tridimensional structure of their major cytoadhesins by X-ray crystallography and cryo-electron microscopy/tomography, has provided important insights regarding the mechanics of infection and evasion of immune surveillance.
Collapse
Affiliation(s)
- David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Sergi Torres-Puig
- Research Unit of Molecular Microbiology (RUMM), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Institut d'Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
5
|
Abrashev R, Krumova E, Petrova P, Eneva R, Kostadinova N, Miteva-Staleva J, Engibarov S, Stoyancheva G, Gocheva Y, Kolyovska V, Dishliyska V, Spassova B, Angelova M. Distribution of a novel enzyme of sialidase family among native filamentous fungi. Fungal Biol 2021; 125:412-425. [PMID: 33910682 DOI: 10.1016/j.funbio.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Sialidases (neuraminidases, EC 3.2.1.18) are widely distributed in biological systems but there are only scarce data on its production by filamentous fungi. The aim of this study was to obtain information about sialidase distribution in filamentous fungi from non-clinical isolates, to determine availability of sialidase gene, and to select a perspective producer. A total of 113 fungal strains belonging to Ascomycota and Zygomycota compassing 21 genera and 51 species were screened. Among them, 77 strains (11 orders, 14 families and 16 genera) were able to synthesize sialidase. Present data showed a habitat-dependent variation of sialidase activity between species and within species, depending on location. Sialidase gene was identified in sialidase-positive and sialidase-negative strains. . Among three perspective strains, the best producer was chosen based on their sialidase production depending on type of cultivation, medium composition, and growth temperature. The selected P. griseofulvum Р29 was cultivated in 3L bioreactor at 20 °C on medium supplemented with 0.5% milk whey. The results demonstrated better growth and 2.3-fold higher maximum enzyme activity compared to the shaken flask cultures. Moreover, the early occurring maximum (48 h) is an important prerequisite for future up scaling of the process.
Collapse
Affiliation(s)
- Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Penka Petrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Nedelina Kostadinova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Jeni Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Stephan Engibarov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Galina Stoyancheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Yana Gocheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Academician G. Bonchev 25, 1113 Sofia, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Boryana Spassova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Maria Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria.
| |
Collapse
|
6
|
Perez K, Mullen N, Canter JA, Ley DH, May M. Phenotypic diversity in an emerging mycoplasmal disease. Microb Pathog 2019; 138:103798. [PMID: 31639466 DOI: 10.1016/j.micpath.2019.103798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/27/2022]
Abstract
The avian pathogen Mycoplasma gallisepticum (MG) is a known pathogen of poultry, and newly emerged pathogen of house finches wherein it is associated with lethal conjunctivitis. Factors present in MG that are known to mediate virulence include cytadherence, sialidase activity, peroxide production, and biofilm formation. We have quantitatively assessed these factors for MG isolates from house finches from a temporal and geographic distribution across the continental United States that show differing capacity for virulence in vivo. Statistically significant (P < 0.05) differences were observed across strains for sialidase activity, cytadherence, and hydrogen peroxide production. Sialidase activity increased over time in geographically static populations, but did not correlate with time overall. All strains were able to bind α-2,6-linked sialic acid. No strains were found to bind α-2,3-linked sialic acid. All strains produced biofilms in vitro; however, no significant differences were observed in the density of biofilms across strains. Quantitative variance in virulence-associated traits is consistent with within-host evolutionary adaptation in response to a change in ecological niche by a parasitic pathogen.
Collapse
Affiliation(s)
- Kailey Perez
- Department of Biomedical Sciences, University of New England, Biddeford, ME, USA
| | - Nathan Mullen
- Department of Biomedical Sciences, University of New England, Biddeford, ME, USA
| | - Jessica A Canter
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - David H Ley
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Meghan May
- Department of Biomedical Sciences, University of New England, Biddeford, ME, USA.
| |
Collapse
|
7
|
Trueeb BS, Gerber S, Maes D, Gharib WH, Kuhnert P. Tn-sequencing of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis mutant libraries reveals non-essential genes of porcine mycoplasmas differing in pathogenicity. Vet Res 2019; 50:55. [PMID: 31324222 PMCID: PMC6642558 DOI: 10.1186/s13567-019-0674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma hyopneumoniae and Mycoplasma hyorhinis are two phylogenetically related species colonizing the respiratory tract of pigs but differing in pathogenicity, the basis of which is not well resolved. We hypothesize that genes belonging to the species-specific portion of the genome and being non-essential during ideal laboratory growth conditions encode possible virulent determinants and are the driver of interspecies differences. To investigate this, transposon mutant libraries were generated for both species and a transposon sequencing (Tn-seq) method for mycoplasmas was established to identify non-essential genes. Tn-seq datasets combined with bidirectional Blastp analysis revealed that 101 out of a total 678 coding sequences (CDS) are species-specific and non-essential CDS of M. hyopneumoniae strain F7.2C, while 96 out of a total 751 CDS are species-specific and non-essential CDS in the M. hyorhinis strain JF5820. Among these species-specific and non-essential CDS were genes involved in metabolic pathways. In particular, the myo-inositol and the sialic acid pathways were found to be non-essential and therefore could be considered important to the specific pathogenicity of M. hyopneumoniae and M. hyorhinis, respectively. Such pathways could enable the use of an alternative energy source providing an advantage in their specific niche and might be interesting targets to knock out in order to generate attenuated live vaccines.
Collapse
Affiliation(s)
- Bettina S Trueeb
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Simona Gerber
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominiek Maes
- Unit Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Walid H Gharib
- Interfaculty Bioinformatics Unit and Swiss, Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Zhu L, Shahid MA, Markham J, Browning GF, Noormohammadi AH, Marenda MS. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution. BMC Genomics 2018; 19:117. [PMID: 29394882 PMCID: PMC5797395 DOI: 10.1186/s12864-018-4501-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/28/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. RESULTS The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. CONCLUSIONS MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.
Collapse
Affiliation(s)
- Ling Zhu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Muhammad A. Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab 60800 Pakistan
| | - John Markham
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3000 Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Amir H. Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| |
Collapse
|
9
|
Thomason CA, Mullen N, Belden LK, May M, Hawley DM. Resident Microbiome Disruption with Antibiotics Enhances Virulence of a Colonizing Pathogen. Sci Rep 2017; 7:16177. [PMID: 29170421 PMCID: PMC5701009 DOI: 10.1038/s41598-017-16393-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023] Open
Abstract
There is growing evidence that symbiotic microbes play key roles in host defense, but less is known about how symbiotic microbes mediate pathogen-induced damage to hosts. Here, we use a natural wildlife disease system, house finches and the conjunctival bacterial pathogen Mycoplasma gallisepticum (MG), to experimentally examine the impact of the ocular microbiome on host damage and pathogen virulence factors during infection. We disrupted the ocular bacterial community of healthy finches using an antibiotic that MG is intrinsically resistant to, then inoculated antibiotic- and sham-treated birds with MG. House finches with antibiotic-disrupted ocular microbiomes had more severe MG-induced conjunctival inflammation than birds with unaltered microbiomes, even after accounting for differences in conjunctival MG load. Furthermore, MG cultures from finches with disrupted microbiomes had increased sialidase enzyme and cytadherence activity, traits associated with enhanced virulence in Mycoplasmas, relative to isolates from sham-treated birds. Variation in sialidase activity and cytadherence among isolates was tightly linked with degree of tissue inflammation in hosts, supporting the consideration of these traits as virulence factors in this system. Overall, our results suggest that microbial dysbiosis can result in enhanced virulence of colonizing pathogens, with critical implications for the health of wildlife, domestic animals, and humans.
Collapse
Affiliation(s)
| | - Nathan Mullen
- Department of Biomedical Sciences, University of New England, Biddeford, ME, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Meghan May
- Department of Biomedical Sciences, University of New England, Biddeford, ME, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
10
|
Bao S, Guo X, Yu S, Ding J, Tan L, Zhang F, Sun Y, Qiu X, Chen G, Ding C. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein. BMC Vet Res 2014; 10:223. [PMID: 25253294 PMCID: PMC4189797 DOI: 10.1186/s12917-014-0223-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/18/2014] [Indexed: 12/25/2022] Open
Abstract
Background Mycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene (eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated. Results We demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1 × 10−3 M and 0.739 μmol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti–rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum. Conclusion These results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti–rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0223-6) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Priestnall SL, Mitchell JA, Walker CA, Erles K, Brownlie J. New and Emerging Pathogens in Canine Infectious Respiratory Disease. Vet Pathol 2013; 51:492-504. [DOI: 10.1177/0300985813511130] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canine infectious respiratory disease is a common, worldwide disease syndrome of multifactorial etiology. This review presents a summary of 6 viruses (canine respiratory coronavirus, canine pneumovirus, canine influenza virus, pantropic canine coronavirus, canine bocavirus, and canine hepacivirus) and 2 bacteria ( Streptococcus zooepidemicus and Mycoplasma cynos) that have been associated with respiratory disease in dogs. For some pathogens a causal role is clear, whereas for others, ongoing research aims to uncover their pathogenesis and contribution to this complex syndrome. Etiology, clinical disease, pathogenesis, and epidemiology are described for each pathogen, with an emphasis on recent discoveries or novel findings.
Collapse
Affiliation(s)
- S. L. Priestnall
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - J. A. Mitchell
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - C. A. Walker
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - K. Erles
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - J. Brownlie
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
12
|
Tan L, Chen H, Yu S, Qiu X, Song C, Chen D, Zhang S, Zhang F, He S, Shen X, Hu M, Ding C. A SOE-PCR method of introducing multiple mutations into Mycoplasma gallisepticum neuraminidase. J Microbiol Methods 2013; 94:117-120. [PMID: 23707236 DOI: 10.1016/j.mimet.2013.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
A modified splicing with overlap extension PCR (SOE-PCR) was generated to introduce 21 TGA to TGG at Mycoplasma gallisepticum MGA_0329 gene. The recombinant protein was successfully expressed and retained neuraminidase activities, indicating that SOE-PCR is a rapid and highly efficient method of introducing multiple mutations into large M. gallisepticum genes.
Collapse
Affiliation(s)
- Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Danqing Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Shilei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Fanqing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Suibin He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Xinyue Shen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225009, P. R. China
| | - Meirong Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China.
| |
Collapse
|
13
|
Marconi C, Donders GGG, Bellen G, Brown DR, Parada CMGL, Silva MG. Sialidase activity in aerobic vaginitis is equal to levels during bacterial vaginosis. Eur J Obstet Gynecol Reprod Biol 2013; 167:205-9. [PMID: 23375395 DOI: 10.1016/j.ejogrb.2012.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/05/2012] [Accepted: 12/01/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate levels of proinflammatory cytokines and sialidase activity in aerobic vaginitis (AV) in relation to normal vaginal flora and bacterial vaginosis (BV). STUDY DESIGN In this cross-sectional study, a total of 682 consecutive non-pregnant women attending the gynecology service were assessed and 408 women were included. Vaginal rinsing samples were collected from 223 women with microscopic finding of BV (n=98), aerobic vaginitis (n=25) and normal flora (n=100). Samples were tested for interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and sialidase activity. RESULTS Compared to women with normal flora, vaginal levels of IL-1β were highly increased in both BV and AV (p<0.0001). Significantly higher vaginal IL-6 was detected in AV (p<0.0001) but not in BV, in relation to normal flora. Women with AV also presented increased IL-8 levels (p<0.001), while those with BV presented levels similar to normal flora. Sialidase was increased in BV and AV compared with the normal group (p<0.0001) but no difference in sialidase activity was observed between BV and AV. CONCLUSION A more intense inflammatory host response occurs for AV than for BV when compared with normal flora. Furthermore, the increased sialidase activity in AV and BV indicates that both abnormal vaginal flora types can be harmful to the maintenance of a healthy vaginal environment.
Collapse
Affiliation(s)
- C Marconi
- Department of Pathology, Botucatu Medical School, UNESP - Univ Estadual Paulista, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
May M, Szczepanek SM, Frasca S, Gates AE, Demcovitz DL, Moneypenny CG, Brown DR, Geary SJ. Effects of sialidase knockout and complementation on virulence of Mycoplasma gallisepticum. Vet Microbiol 2011; 157:91-5. [PMID: 22197303 DOI: 10.1016/j.vetmic.2011.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/27/2022]
Abstract
Reannotation of the pathogenic Mycoplasma gallisepticum strain R(low) genome identified the hypothetical gene MGA_0329 as a homolog of the sialidase gene MS53_0199 of Mycoplasma synoviae strain MS53. Potent sialidase activity was subsequently quantitated in several M. gallisepticum strains. Because sialidase activity levels correlate significantly with differing M. synoviae strain virulence, we hypothesized this enzyme may also influence the virulence of M. gallisepticum. MGA_0329 was disrupted in strain R(low) to create mutants 6, 358 and P1C5, which resulted in the loss of sialidase activity in all three mutants. Chickens infected with the knockout mutants had significantly less severe (P<0.05) tracheal lesions and tracheal mucosal thickening than chickens infected with equal doses of strain R(low). Significantly fewer (P<0.05) CCU especially of strains 6 and P1C5 were recovered at necropsy. Mini-Tn4001tet plasmid pTF20 carrying a wild-type copy of MGA_0329 with its native promoter was used to complement the genetic lesion in strain P1C5. Three clones derived from P1C5, each having one copy of MGA_0329 stably transposed into a different site in its genome, expressed sialidase restored to wild-type activity levels (1.58×10(-8)U/CFU). Complementation of P1C5 with MGA_0329 did not restore it to wild-type levels of virulence, indicating that the contribution of sialidase to M. gallisepticum virulence is not straightforward.
Collapse
Affiliation(s)
- Meghan May
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
May M, Brown DR. Retrospective survey for sialidase activity in Mycoplasma pneumoniae isolates from cases of community-acquired pneumonia. BMC Res Notes 2011; 4:195. [PMID: 21676241 PMCID: PMC3138463 DOI: 10.1186/1756-0500-4-195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/15/2011] [Indexed: 01/20/2023] Open
Abstract
Background Sialidase is a well-known virulence factor of other respiratory pathogens, but was only recently documented to occur in some species of Mycoplasma. The sialidase activity expressed can vary quantitatively among strains within a species of mycoplasma, from undetectable to amounts that correlate positively with strain virulence. Very few isolates of Mycoplasma pneumoniae had ever been examined for sialidase activity, so it was unknown whether sialidase may contribute to diseases involving this species. Findings No sialidase activity was detected by spectrofluorometric assay of 15 laboratory strains and 91 clinical isolates of M. pneumoniae banked over many years from patients having radiologically-confirmed, uncomplicated community-acquired pneumonia. Conclusions The annotated genome of strain M129 (GenBank NC_000912, ATCC 29342), also isolated from a patient with pneumonia, accurately represents the absence of sialidase genes from strains of M. pneumoniae typically associated with uncomplicated community-acquired pneumonia. A possible involvement of sialidase in neurologic or other extra-respiratory manifestations of M. pneumoniae mycoplasmosis remains to be investigated.
Collapse
Affiliation(s)
- Meghan May
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville FL, USA.
| | | |
Collapse
|
16
|
Berčič RL, Cizelj I, Dušanić D, Narat M, Zorman-Rojs O, Dovč P, Benčina D. Neuraminidase ofMycoplasma synoviaedesialylates heavy chain of the chicken immunoglobulin G and glycoproteins of chicken tracheal mucus. Avian Pathol 2011; 40:299-308. [DOI: 10.1080/03079457.2011.565311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Diversity of expressed vlhA adhesin sequences and intermediate hemagglutination phenotypes in Mycoplasma synoviae. J Bacteriol 2011; 193:2116-21. [PMID: 21378196 DOI: 10.1128/jb.00022-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A reservoir of pseudogene alleles encoding the primary adhesin VlhA occurs in the avian pathogen Mycoplasma synoviae. Recombination between this reservoir and its single expression site was predicted to result in lineages of M. synoviae that each express a different vlhA allele as a consequence of host immune responses to those antigens. Such interstrain diversity at the vlhA expression site, including major differences in the predicted secondary structures of their expressed adhesins, was confirmed in 14 specimens of M. synoviae. Corresponding functional differences in the extent to which they agglutinated erythrocytes, a quantitative proxy for VlhA-mediated cytadherence, were also evident. There was a >20-fold difference between the highest- and lowest-agglutinating strains and a rheostatic distribution of intermediate phenotypes among the others (Tukey-Kramer honestly significant difference [HSD], P < 0.001). Coincubation with the sialic acid analog 2-deoxy-2,3-didehydro-N-acetylneuraminate inhibited hemagglutination in a pattern correlated with endogenous sialidase activity (r = 0.91, P < 0.001), although not consistently to the same extent that erythrocyte pretreatment with sialidase purified from Clostridium perfringens did (P < 0.05). The striking correlation between the ranked hemagglutination and endogenous sialidase activities of these strains (Spearman's r = 0.874, P < 0.001) is evidence that host-induced vlhA allele switching indirectly drives sequence diversity in the passenger sialidase gene of M. synoviae.
Collapse
|
18
|
First partial proteome of the poultry pathogen Mycoplasma synoviae. Vet Microbiol 2010; 145:134-41. [DOI: 10.1016/j.vetmic.2010.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 02/04/2023]
|
19
|
Kent BN, Bordenstein SR. Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 2010; 18:173-81. [PMID: 20083406 DOI: 10.1016/j.tim.2009.12.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/07/2009] [Accepted: 12/16/2009] [Indexed: 11/15/2022]
Abstract
The discovery of an extraordinarily high level of mobile elements in the genome of Wolbachia, a widespread arthropod and nematode endosymbiont, suggests that this bacterium could be an excellent model for assessing the evolution and function of mobile DNA in specialized bacteria. In this paper, we discuss how studies on the temperate bacteriophage WO of Wolbachia have revealed unexpected levels of genomic flux and are challenging previously held views about the clonality of obligate intracellular bacteria. We also discuss the roles this phage might play in the Wolbachia-arthropod symbiosis and infer how this research can be translated to combating human diseases vectored by arthropods. We expect that this temperate phage will be a preeminent model system to understand phage genetics, evolution and ecology in obligate intracellular bacteria. In this sense, phage WO might be likened to phage lambda of the endosymbiont world.
Collapse
Affiliation(s)
- Bethany N Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
20
|
Diversifying and stabilizing selection of sialidase and N-acetylneuraminate catabolism in Mycoplasma synoviae. J Bacteriol 2009; 191:3588-93. [PMID: 19329630 DOI: 10.1128/jb.00142-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sialidase activity varies widely among strains and tends to correlate with strain virulence in the avian pathogen Mycoplasma synoviae. To characterize the forms of selection acting on enzymes required for sialic acid scavenging and catabolism, the ratios of nonsynonymous (K(a)) to synonymous (K(s)) mutation frequency were calculated for codons in the sialidase gene of 16 strains of M. synoviae and for its nearly identical homolog in four strains of Mycoplasma gallisepticum. The K(a)/K(s) (omega) values for the linked genes required for nutritive N-acetylneuraminate catabolism (nanA, nagC, nanE, nagA, and nagB) from nine strains of M. synoviae were also determined. To provide context, omega was determined for all corresponding genes of 26 strains of Clostridium perfringens and Streptococcus pneumoniae. Bayesian models of sequence evolution showed that only the sialidase of M. synoviae was under significant (P < 0.001) diversifying selection, while the M. synoviae genes for N-acetylneuraminate catabolism and all genes examined from M. gallisepticum, C. perfringens, and S. pneumoniae were under neutral to stabilizing selection. Diversifying selection acting on the sialidase of M. synoviae, but not on the sialidase of M. gallisepticum or the sialidases or other enzymes essential for sialic acid scavenging in other Firmicutes, is evidence that variation in specific activity of the enzyme is perpetuated by a nonnutritive function in M. synoviae that is influenced by the genomic context of the organism.
Collapse
|
21
|
May M, Brown DR. Secreted sialidase activity of canine mycoplasmas. Vet Microbiol 2009; 137:380-3. [PMID: 19201110 DOI: 10.1016/j.vetmic.2009.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/19/2008] [Accepted: 01/02/2009] [Indexed: 10/21/2022]
Abstract
Through a survey of the phylogenetic distribution of sialidase among mycoplasmas, we detected activity secreted by the type strains of 3 of 11 species frequently or first isolated from dogs. The specific activity of washed cells of the type strains of Mycoplasma canis, Mycoplasma cynos, and Mycoplasma molare ranged from 5.2+/-0.8 x 10(-6) to 1.1+/-0.3 x 10(-5) enzymatic units per colony-forming unit (U/CFU). Cells of M. molare strain H542(T) had twice the specific activity (P<0.05) of M. canis strain PG14(T) or M. cynos strain H831(T). Significant differences in sialidase activity existed among nine clinical isolates of M. canis, ranging from not detectable to 2.1+/-0.1 x 10(-5)U/CFU. The type strains of other species previously isolated from dogs (Mycoplasma arginini, Mycoplasma bovigenitalium, Mycoplasma edwardii, Mycoplasma felis, Mycoplasma gatae, Mycoplasma maculosum, Mycoplasma opalescens, and Mycoplasma spumans) did not exhibit either secreted or cell-associated sialidase activity. Neither specific nor degenerate PCR primers complementary to the three known mycoplasmal sialidase alleles were able to amplify orthologs in M. canis, M. cynos, or M. molare, further evidence that the secreted sialidase of those species is distinct from the strictly cell-associated sialidases of Mycoplasma alligatoris, Mycoplasma synoviae, and Mycoplasma gallisepticum. This is the first report of a well-known bacterial virulence factor whose expression varies among strains of certain Mycoplasma species that infect dogs.
Collapse
Affiliation(s)
- Meghan May
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | | |
Collapse
|
22
|
Berčič RL, Slavec B, Lavrič M, Narat M, Zorman-Rojs O, Dovč P, Benčina D. A survey of avian Mycoplasma species for neuraminidase enzymatic activity. Vet Microbiol 2008; 130:391-7. [DOI: 10.1016/j.vetmic.2008.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 11/17/2022]
|
23
|
May M, Brown DR. Genetic variation in sialidase and linkage to N-acetylneuraminate catabolism in Mycoplasma synoviae. Microb Pathog 2008; 45:38-44. [PMID: 18490131 DOI: 10.1016/j.micpath.2008.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 10/22/2022]
Abstract
We explored the genetic basis for intraspecific variation in mycoplasmal sialidase activity that correlates with virulence, and its potentially advantageous linkage to nutrient catabolism. Polymorphism in N-acetylneuraminate scavenging and degradation genes (sialidase, N-acetylneuraminate lyase, N-acetylmannosamine kinase, N-acetylmannosamine-6-phosphate epimerase, N-acetylglucosamine-6-phosphate deacetylase, and glucosamine-6-phosphate deaminase) was evident among eight strains of the avian pathogen Mycoplasma synoviae. Most differences were single nucleotide polymorphisms, ranging from 0.34+/-0.04 substitutions per 100 bp for N-acetylmannosamine kinase to 0.65+/-0.03 for the single-copy sialidase gene nanI. Missense mutations were twice as common as silent mutations in nanI; 26% resulted in amino acids dissimilar to consensus; and there was a 12-base deletion near the nanI promoter in strain WVU1853(T), supporting a complex genetic basis for differences in sialidase activity. Two strains had identical frameshifts in the N-acetylneuraminate lyase gene nanA, resulting in nonsense mutations, and both had downstream deletions in nanA. Such genetic lesions uncouple extracellular liberation of sialic acid from generation of fructose-6-phosphate and pyruvate via intracellular N-acetylneuraminate degradation. Retention of nanI by such strains, but not others in the M. synoviae phylogenetic cluster, is evidence that sialidase has an important non-nutritional role in the ecology of M. synoviae and certain other mycoplasmas.
Collapse
Affiliation(s)
- Meghan May
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | | |
Collapse
|