1
|
Wang L, Zhu J, Xie P, Gong D. Pigeon during the Breeding Cycle: Behaviors, Composition and Formation of Crop Milk, and Physiological Adaptation. Life (Basel) 2023; 13:1866. [PMID: 37763270 PMCID: PMC10533064 DOI: 10.3390/life13091866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pigeon is an important economic poultry species in many countries. As an altricial bird, its growth and development are largely reliant on pigeon milk produced by the crop tissue in the first week. During the breeding cycle, pigeons undergo a series of behavioral changes. Pigeon milk is generally characterized by having high concentrations of proteins and lipids, and a complicated regulatory network is involved in the milk formation. Hormones, especially prolactin, could promote the proliferation of crop epidermal cells and nutrient accumulation. The expression of target genes associated with these important biological processes in the crop epidermis is affected by non-coding RNAs. Meanwhile, signaling pathways, such as target of rapamycin (TOR), Janus kinase/signal transducer and activator of transcription proteins (JAK/STAT), protein kinase B (Akt), etc., influence the production of crop milk by either enhancing protein synthesis in crop cells or inducing apoptosis of crop epidermal cells. In order to adapt to the different breeding periods, pigeons are physiologically changed in their intestinal morphology and function and liver metabolism. This paper reviews the behaviors and physiological adaptations of pigeon during the breeding cycle, the composition of pigeon crop milk, and the mechanism of its formation, which is important for a better understanding of the physiology of altricial birds and the development of artificial crop milk.
Collapse
Affiliation(s)
- Liuxiong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Jianguo Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
| |
Collapse
|
2
|
Losada-Medina D, Yitbarek A, Nazeer N, Uribe-Diaz S, Ahmed M, Rodriguez-Lecompte JC. Identification, tissue characterization, and innate immune role of Angiogenin-4 expression in young broiler chickens. Poult Sci 2020; 99:2992-3000. [PMID: 32475434 PMCID: PMC7597696 DOI: 10.1016/j.psj.2020.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Intestinal epithelial cells are major producers of antimicrobial proteins, which play an important role in innate immunity. In addition to defensins, the Ribonuclease A superfamily includes important antimicrobial proteins involved in host-defense mechanisms in vertebrates. Angiogenin-4 (Ang4), a member of this RNase superfamily, has been demonstrated to be secreted by Paneth cells in mice. We have successfully cloned and characterized a new chicken gene (chAng4), found for the first time in a nonmammalian species, from intestinal epithelial and lymphoid cells. Characterization of chAng4 revealed 99% nucleotide and 97% amino acid sequence homology to mouse Ang4. Similar functional regions were identified, suggesting a role in innate immunity and regulation of gut microbiota. Furthermore, the mRNA expression pattern of chAng4 was studied in broilers in the presence or absence of beneficial bacteria (probiotics) and organic acids. The results showed that one-day-old chickens expressed low levels of Ang4 in almost all the evaluated tissues (crop, proventriculus, duodenum, jejunum, ileum, and cecal tonsils), except in the bursa of Fabricius that presented the highest expression level. The addition of probiotics and organic acids for either 7 or 14 consecutive days demonstrated a direct effect of probiotics and organic acids on chAng4 expression; moreover, broilers receiving probiotics and organic acids for only 7 D showed higher levels of chAng4 expression compared with those treated for 14 D. Broilers without treatment had a constant high level of expression in cecal tonsils and bursa. In conclusion, we were able to identify and characterize a new antimicrobial gene in chickens (chAng4) throughout the gastrointestinal tract. chAng4 mRNA gene expression was associated with the presence of naturally occurring and supplemented (probiotic) bacteria. The encoded protein might have a potential bactericidal effect against intestinal nonpathogenic and pathogenic microbes, modulating the intestinal microbiota and the innate immunity, and thereby may help minimize the use of antibiotics in poultry feed.
Collapse
Affiliation(s)
- Daniela Losada-Medina
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Santiago Uribe-Diaz
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Juan C Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| |
Collapse
|
4
|
Gast RK, Guraya R, Jones DR, Anderson KE, Karcher DM. Frequency and Duration of Fecal Shedding of Salmonella Enteritidis by Experimentally Infected Laying Hens Housed in Enriched Colony Cages at Different Stocking Densities. Front Vet Sci 2017; 4:47. [PMID: 28443289 PMCID: PMC5385464 DOI: 10.3389/fvets.2017.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/22/2017] [Indexed: 12/02/2022] Open
Abstract
Human infections with Salmonella Enteritidis are often attributed to the consumption of contaminated eggs, so the prevalence of this pathogen in egg-laying poultry is an important public health risk factor. Numerous and complex environmental influences on Salmonella persistence and transmission are exerted by management practices and housing facilities used in commercial egg production. In recent years, the animal welfare implications of poultry housing systems have guided the development of alternatives to traditional cage-based housing, but their food safety consequences are not yet fully understood. The present study assessed the effects of different bird stocking densities on the frequency and duration of fecal shedding of S. Enteritidis in groups of experimentally infected laying hens housed in colony cages enriched with perching and nesting areas. In two trials, groups of laying hens were distributed at two stocking densities (648 and 973 cm2/bird) into enriched colony cages and (along with a group housed in conventional cages at 648 cm2/bird) orally inoculated with doses of 1.0 × 108 cfu of S. Enteritidis. At 10 weekly postinoculation intervals, samples of voided feces were collected from beneath each cage and cultured to detect S. Enteritidis. Fecal shedding of S. Enteritidis was detected for up to 10 weeks postinoculation by hens in all three housing treatment groups. The overall frequency of positive fecal cultures was significantly (P < 0.05) greater from conventional cages than from enriched colony cages (at the lower stocking density) for the total of all sampling dates (45.0 vs. 33.3%) and also for samples collected at 4–9 weeks postinfection. Likewise, the frequency of S. Enteritidis isolation from feces from conventional cages was significantly greater than from enriched colony cages (at the higher hen stocking density) for the sum of all samples (45.0 vs. 36.7%) and at 6 weeks postinoculation. Moreover, the frequency of S. Enteritidis fecal recovery from enriched colony cages at the higher hen stocking was significantly greater than from similar cages at the lower stocking density for all 10 sampling dates combined (39.4 vs. 33.3%). These results suggest that stocking density can affect S. Enteritidis intestinal colonization and fecal shedding in laying hens, but some other difference between conventional and enriched colony cage systems appears to exert an additional influence.
Collapse
Affiliation(s)
- Richard K Gast
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Rupa Guraya
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Deana R Jones
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Kenneth E Anderson
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Darrin M Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Scanes CG, Pierzchala-Koziec K. Biology of the Gastrointestinal Tract in Poultry. AVIAN BIOLOGY RESEARCH 2014; 7:193-222. [DOI: 10.3184/175815514x14162292284822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
This review provides an overview of the anatomy and physiology of the gastrointestinal tract (GIT) of poultry, particularly of the domesticated chicken. The structure and functioning of the major regions of the GIT are discussed bringing together recent studies with the older, often neglected, literature. Attention is focused on the GIT as an immune organ and on GIT fermentation/bacterial colonisation. In addition, the interactions of nutrition with GIT biology are discussed. The roles of neuropeptides and hormones on the development and functioning of the GIT are extensively reviewed.
Collapse
Affiliation(s)
- Colin G. Scanes
- Department of Biological Science, University of Wisconsin Milwaukee, WI53201-041, USA
| | | |
Collapse
|