1
|
Esaki M, Chollot M, Rémy S, Courvoisier-Guyader K, Penzes Z, Pasdeloup D, Denesvre C. Tegument Protein pUL47 Is Important but Not Essential for Horizontal Transmission of Vaccinal Strain SB-1 of Gallid Alphaherpesvirus 3. Viruses 2025; 17:431. [PMID: 40143358 PMCID: PMC11946105 DOI: 10.3390/v17030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
The gallid alphaherpesvirus 3 (GaAHV3) SB-1, a Mardivirus used as a vaccine against Marek's disease, has been proposed as an interesting viral vector for poultry vaccination. However, SB-1 is highly transmissible between chickens, a feature that may be a limitation for the use of live recombinant vaccines. We have previously shown that UL47 is essential for horizontal transmission of the pathogenic Marek's disease virus between chickens, but it is completely dispensable for replication and pathogenesis. In contrast, the role of UL47 in the biology of SB-1 remains unknown. To study that, we generated an SB-1 mutant lacking UL47 (∆47) from a commercial SB-1 isolate. This mutant replicated and spread like the WT in primary fibroblasts, indicating no growth defects in cell culture. In vivo, chickens inoculated with ∆47 had significantly reduced viral loads in the blood and the spleen, and transport to the skin was delayed compared to WT inoculated chickens. Strikingly, the ∆47 mutant was present in 66% of contact birds. As expected, 100% of contact birds were positive for the WT. In conclusion, our findings reveal that UL47 facilitates GaAHV3 SB-1 replication in vivo, which is important for latency establishment but is not essential for horizontal transmission, unlike for MDV.
Collapse
Affiliation(s)
- Motoyuki Esaki
- Ceva Santé Animale, Ceva-Japan, Yokohama, Kanagawa 230-0045, Japan;
| | - Mélanie Chollot
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Sylvie Rémy
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Katia Courvoisier-Guyader
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Zoltan Penzes
- Ceva Santé Animale, Ceva-Phylaxia, 1107 Budapest, Hungary;
| | - David Pasdeloup
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Caroline Denesvre
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| |
Collapse
|
2
|
Bonorino FC, Garcia Marin JF, Fares A, Khaled N, Emmanuel D, Kulkarni RR, Gimeno I. Characterization of immunopathological changes in the feather pulp of CVI988-vaccinated pullets challenged with a very virulent plus Marek's disease virus strain. Avian Pathol 2025:1-9. [PMID: 40017374 DOI: 10.1080/03079457.2025.2472838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
High load of oncogenic Marek's disease virus (MDV) DNA in the feather pulp (FP) as early as 21 days of age is a powerful criterion to predict the outcome of Marek's disease (MD) in apparently healthy chickens. The objective of this study was to elucidate the immunopathological changes in the FP of 21-day-old chickens that had been vaccinated with CVI988 vaccine (healthy), vaccinated and challenged with a very virulent plus (vv+) MDV strain 648A (well protected), or were unvaccinated and challenged with 648A strain (not protected) when compared to uninfected naïve chickens. Oncogenic MDV DNA load, histopathological and immunohistochemical evaluation of the lesions, and immunophenotypic characterization of the infiltrates by flow cytometry were examined. Our results demonstrate that 648A-infected unvaccinated chickens had a significant increase in the percentage of CD3+ T cells, mainly CD4+MHC-II+ cells and CD8+MHC-II+ cells, when compared to all other groups. They also had a significantly decreased number of CD8β+ T cells compared to all other groups. Infection with 648A reduced the percentage of macrophages, not only in the unvaccinated group but also in the CVI988/648A group. In addition, groups that were vaccinated with CVI988, regardless of the challenge status, had higher levels of CD8β+ T cells, suggesting that the vaccine has an enhancing effect on the CTL cells. Our results showed that the load of oncogenic MDV is highly correlated with the infiltration of CD4+MHC-II+ cells and provide further confirmation that FP is indeed an appropriate sample for the early diagnosis of MD.
Collapse
Affiliation(s)
- Federico C Bonorino
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
- Facultad de Veterinaria, Universidad de Leon, Leon, Spain
| | | | - Abdelhamid Fares
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Nagwa Khaled
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Deanna Emmanuel
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| | - Isabel Gimeno
- Department of Population Health and Pathobiology, NCSU-College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
3
|
Faiz NM, Cortes AL, Phang YF, Gimeno IM. Optimizing protocols for monitoring in vivo replication of a novel chimeric Marek's disease vaccine with an insertion of the long terminal repeat of reticuloendotheliosis virus in the CVI988 strain genome (CVI-LTR). Avian Pathol 2024; 53:303-311. [PMID: 38411905 DOI: 10.1080/03079457.2024.2324930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Monitoring Marek's disease (MD) vaccination is routinely done by evaluating the load of MD vaccine in the feather pulp (FP) between 7 and 10 days of age. However, attempts in our laboratory to detect a novel CVI-LTR vaccine in the FP samples from commercial flocks failed. The objective of this study was to evaluate the most suitable tissue and age to monitor CVI-LTR vaccination. We used two different commercial CVI988 vaccines as controls. One hundred and sixty 1-day-old commercial brown layers were vaccinated with either CVI-LTR, CVI988-A, CVI988-B or remained unvaccinated. Samples of the spleen, thymus, and bursa were collected at 3, 4, 5, and 6 days of age and samples of FP were collected at 7 and 21 days for DNA isolation. Our results showed that CVI-LTR replicated earlier than CVI988 vaccines in the lymphoid organs but was not detected in the FP at either 7 or at 21 days of age. We also confirmed that either the spleen or thymus collected at 4-6 days was a suitable sample to monitor CVI-LTR vaccination in commercial flocks. Finally, we evaluated the load of oncogenic MDV DNA in five commercial flocks that were vaccinated with either CVI-LTR + rHVT or CVI988-A + rHVT. The load of oncogenic MDV DNA was evaluated at 21 days in the FP in 20 chickens per group. Our results demonstrated that CVI-LTR was more successful in reducing oncogenic MDV DNA at 21 days of age than the CVI988-A strain.RESEARCH HIGHLIGHTSCVI-LTR replicates in the thymus and spleen earlier than CVI988.CVI-LTR replicates in lymphoid organs but it cannot be detected in feather pulp.CVI-LTR reduced the load of oncogenic MDV DNA more efficiently than CVI988.
Collapse
Affiliation(s)
- Nik M Faiz
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
- Duke University Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Yuen-Fun Phang
- Boehringer Ingelheim Animal Health Singapore, Guoco Midtown, Singapore
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
5
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Bortolami A, Guinat C, Harder T, Stegeman A, Terregino C, Lanfranchi B, Preite L, Aznar I, Broglia A, Baldinelli F, Gonzales Rojas JL. Vaccination of poultry against highly pathogenic avian influenza - Part 2. Surveillance and mitigation measures. EFSA J 2024; 22:e8755. [PMID: 38638555 PMCID: PMC11024799 DOI: 10.2903/j.efsa.2024.8755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.
Collapse
|
6
|
Wu S, Ding T, Shao H, Qian K, Ye J, Qin A. A quadruplex real-time PCR assay combined with a conventional PCR for the differential detection of Marek's disease virus vaccines and field strains. Front Vet Sci 2023; 10:1161441. [PMID: 37252401 PMCID: PMC10213282 DOI: 10.3389/fvets.2023.1161441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
To evaluate the effect of the vaccine and differentiate vaccine from virulent MDV, a new quadruplex real-time PCR assay based on TaqMan probes was developed to differentiate and accurately quantify HVT, CVI988 and virulent MDV-1. The results showed that the limit of detection (LOD) of the new assay was 10 copies with correlation coefficients >0.994 of CVI988, HVT and virulent MDV DNA molecules without cross-reactivity with other avian disease viruses. The intra-assay and inter-assay coefficients of variation (CVs) of Ct values for the new assay were less than 3%. Analysis of replication kinetics of CVI988 and virulent MDV of collected feathers between 7 and 60 days post-infection (dpi) showed MD5 had no significant effect on the genomic load of CVI988 (p > 0.05), while vaccination with CVI988 could significantly reduce the viral load of MD5 (p < 0.05). Combined with meq gene PCR, this method can effectively identify virulent MDV infections in immunized chickens. These results demonstrated that this assay could distinguish between the vaccine and virulent MDV strains and had the advantages of being reliable, sensitive and specific to confirm the immunization status and monitor the circulation of virulent MDV strains.
Collapse
Affiliation(s)
- Shaopeng Wu
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tian Ding
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Boone AC, Kulkarni RR, Cortes AL, Villalobos T, Esandi J, Gimeno IM. In ovo HVT vaccination enhances cellular responses at hatch and addition of poly I:C offers minimal adjuvant effects. Vaccine 2023; 41:2514-2523. [PMID: 36894394 DOI: 10.1016/j.vaccine.2023.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 μg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 μg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.
Collapse
Affiliation(s)
- Allison C Boone
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States; Experimental Pathology Laboratories Inc, 615 Davis Drive Ste. 500, Durham, NC 27713, United States.
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | | | - Javier Esandi
- Zoetis-Global Biodevice, 1040 Swabia Ct, Durham, NC 27703, United States.
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| |
Collapse
|
8
|
Mescolini G, Baigent SJ, Catelli E, Nair VK. Rapid, Sensitive, and Species-Specific Detection of Conventional and Recombinant Herpesvirus of Turkeys Vaccines Using Loop-Mediated Isothermal Amplification Coupled With a Lateral Flow Device Readout. Front Vet Sci 2022; 9:873163. [PMID: 35812862 PMCID: PMC9260039 DOI: 10.3389/fvets.2022.873163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Marek's disease, an economically important disease of chickens caused by virulent serotype 1 strains of the Mardivirus Marek's disease virus (MDV-1), is effectively controlled in the field by live attenuated vaccine viruses including herpesvirus of turkeys (HVT)—both conventional HVT (strain FC126) and, in recent years, recombinant HVT viruses carrying foreign genes from other avian viruses to protect against both Marek's disease and other avian viral diseases. Testing to monitor and confirm successful vaccination is important, but any such test must differentiate HVT from MDV-1 and MDV-2, as vaccination does not prevent infection with these serotypes. End-point and real-time PCR tests are widely used to detect and differentiate HVT, MDV-1 and MDV-2 but require expensive specialist laboratory equipment and trained operators. Here, we developed and validated two tube-based loop-mediated isothermal amplification tests coupled with detection by lateral flow device readout (LAMP-LFD): an HVT-specific test to detect both conventional and recombinant HVT strains, and a second test using novel LAMP primers to specifically detect the Vaxxitek® recombinant HVT. Specificity was confirmed using DNA extracted from virus-infected cultured cells, and limit of detection was determined using plasmid DNA carrying either the HVT or Vaxxitek® genome. The LAMP-LFD tests accurately detected all HVT vaccines, or Vaxxitek® only, in crude DNA as well as purified DNA extracted from field samples of organs, feathers, or poultry house dust that were confirmed positive for HVT by real-time PCR. These LAMP-LFD tests have potential for specific, rapid, simple, and inexpensive detection of HVT vaccines in the field.
Collapse
Affiliation(s)
- Giulia Mescolini
- Avian Pathology Service, Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Susan J. Baigent
- Viral Oncogenesis Group, The Pirbright Institute, Woking, United Kingdom
- *Correspondence: Susan J. Baigent
| | - Elena Catelli
- Avian Pathology Service, Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Venugopal K. Nair
- Viral Oncogenesis Group, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
9
|
Boyett T, Thiemann R, Correa M, Cortes AL, Gimeno IM. Early Challenge with Oncogenic Marek's Disease Virus Does Not Interfere with Load of Marek's Disease Vaccines DNA in the Feather Pulp at 7 Days of Age. Avian Dis 2022; 66:106-111. [DOI: 10.1637/21-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- T. Boyett
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - R. Thiemann
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - M. Correa
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - A. L. Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - I. M. Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
10
|
Brown CL, Montina T, Inglis GD. Feather pulp: a novel substrate useful for proton nuclear magnetic resonance spectroscopy metabolomics and biomarker discovery. Poult Sci 2022; 101:101866. [PMID: 35679673 PMCID: PMC9189206 DOI: 10.1016/j.psj.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Noninvasive biomarkers of stress that are predictive of poultry health are needed. Feather pulp is highly vascularized and represents a potential source of biomarkers that has not been extensively explored. We investigated the feasibility and use of feather pulp for novel biomarker discovery using 1H-Nuclear Magnetic Resonance Spectroscopy (NMR)-based metabolomics. To this end, high quality NMR metabolomic spectra were obtained from chicken feather pulp extracted using either ultrafiltration (UF) or Bligh-Dyer methanol-chloroform (BD) methods. In total, 121 and 160 metabolites were identified using the UF and BD extraction methods, respectively, with 71 of these common to both methods. The metabolome of feather pulp differed in broiler breeders that were 1-, 23-, and 45-wk-of-age. Moreover, feather pulp was more difficult to obtain from older birds, indicating that age must be considered when targeting feather pulp as a source of biomarkers. The metabolomic profile of feather pulp obtained from 12-day-old broilers administered corticosterone differed from control birds, indicating that the metabolome of feather pulp was sensitive to induced physiological stress. A comparative examination of feather pulp and serum in broilers revealed that the feather pulp metabolome differed from that of serum but provided more information. The study findings show that metabolite biomarkers in chicken feather pulp may allow producers to effectively monitor stress, and to objectively develop and evaluate on-farm mitigations, including practices that reduce stress and enhance bird health.
Collapse
|
11
|
|
12
|
Quantitative profiling of Marek's Disease Virus in vaccinated layer chicken. Vet Microbiol 2021; 264:109305. [PMID: 34923248 DOI: 10.1016/j.vetmic.2021.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 11/24/2022]
Abstract
The present study was undertaken to quantify the Marek's Disease Virus (MDV) serotypes in vaccinated commercial layer flocks at 7, 14, 21, 28, 35 and 60-90 days post vaccination (dpv) and to correlate the pathogenic Gallid herpesvirus 2 (GaHV-2, MDV1) load with vaccine viral load of Gallid herpesvirus 3 (GaHV-3, MDV2) and Meleagridis herpesvirus 1 (MeHV-1, MDV3). A total of 25 commercial layer flocks were selected in and around Namakkal district of Tamil nadu, India and the feather pulp (FP) and blood samples were collected. Out of 25 flocks, 14 were revaccinated with bivalent vaccine, six were revaccinated with monovalent vaccine apart from the initial bivalent vaccination done at hatchery and five flocks were not revaccinated. SYBR green based real time PCR was used for absolute quantification of MDV serotypes. The pathogenic MDV1 load had shown an increasing trend until 21 dpv followed by a dip and again had shown a constant uptick between 60 and 90 dpv in the flocks that went on to develop MD outbreak. The flocks which had not encountered any Marek's Disease outbreak had shown increasing trend of MDV2 and 3 load until 21 dpv followed by a slight decrease but maintained a higher load when compared to MDV 1 which had marked a sharp decline between 60 and 90 dpv. Outbreak of MD was observed in seven (28%) out of 25 flocks between 18 and 27 weeks of age. It includes, two out of fourteen farms (14%) revaccinated with bivalent vaccine, two out of six farms (33%) revaccinated with MDV3 vaccine and three out of five farms (60%) without revaccination. The overall mean of vaccine viral load at various stages of dpv was constantly low where as pathogenic MDV 1 load was constantly high between 60 and 90 dpv in the flocks that went on to develop Marek's Disease during later part of life.
Collapse
|
13
|
Gimeno IM, Shaw WN, Turner A, Bremen J, Cortes AL, Faiz NM, Gonder E, Robbins K. Replication of Marek's disease vaccines in turkey embryos and their effect on TLR-3 and IFN-γ transcripts. Avian Pathol 2021; 50:1-7. [PMID: 33533643 DOI: 10.1080/03079457.2021.1882937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Understanding the pathogenesis of herpesvirus of turkeys (HVT) in its natural host is necessary before recombinant HVT (rHVT) can be used efficiently in turkey flocks. The objectives of this study were to evaluate when commercial turkey flocks get infected with wild type HVT, to study replication of HVT (conventional and recombinant rHVT-Newcastle disease, rHVT-ND) and other Marek's disease (MD) vaccines (SB-1 and CVI988) in turkey embryonic tissues, and to evaluate the expression of TLR-3 and IFN-γ in the lung and spleen of one-day-old turkeys after in ovo vaccination with MD vaccines. Our results demonstrated that commercial turkeys got exposed to wild type HVT within the first days of life; therefore, there is a potential of interaction between wild type HVT and rHVT when administered at day of age. On the other hand, all evaluated vaccines (especially HVT and rHVT-ND) replicated very well in turkey embryonic tissues. In ovo vaccination with HVT and CVI988 increased transcription of TLR-3 in the spleen of one-day-old turkeys. However, no effect on the transcription of TLR-3 or IFN-γ in the lungs and IFN-γ in the spleen in newly hatched turkeys was detected in the present study. Because of the limitations of evaluated genes, timepoints, and studied tissues, future studies are warranted to better understand the effect of MD vaccines on the turkey embryo immune responses.RESEARCH HIGHLIGHTS Commercial turkey flocks get infected with wild type HVT within the first days of life.HVT and rHVT replicates readily in turkey embryonic tissues.SB-1 and CVI988 also replicate in turkey embryonic tissues, but at lower rates than HVT and rHVT.HVT and CVI988 increase transcription of TLR-3 in the spleen.
Collapse
Affiliation(s)
- I M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - W N Shaw
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - A Turner
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - J Bremen
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - A L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - N M Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - E Gonder
- Butterball, LLC, Garner, NC, USA
| | | |
Collapse
|
14
|
Gimeno IM, Cortes AL, Reilley A, Barbosa T, Alvarado I, Koopman R, Martinez A. Study of Efficacy and Replication of Recombinant Vector Vaccines by Using Turkey Herpesvirus Combined with Other Marek's Disease Vaccines. Avian Dis 2020; 63:335-341. [PMID: 31251535 DOI: 10.1637/11987-103018-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 11/05/2022]
Abstract
Several recombinant turkey herpesviruses (rHVTs) have been developed within the past decades, and they are now used commercially worldwide. In broiler chickens, rHVTs are usually administered alone, but in long-living birds they are used in combination with Marek's disease (MD) vaccines of other serotypes (i.e., CVI988). The objectives of this work were to 1) evaluate protection against MD conferred by HVT and two rHVTs when combined with CVI988 and 2) optimize the use of rHVT in combination with CVI988 to maximize replication of rHVT without compromising MD protection. Various vaccine protocols, all using rHVT or HVT at the recommended dose (RD), were evaluated. Protocols evaluated included in ovo vaccination with HVT+CVI988 or rHVT+CVI988 (using either the double dose [DD] or the RD of CVI988), day of age vaccination of rHVT+CVI988 at DD, and revaccination protocols using rHVT in ovo followed by CVI988 at DD at day of age. Our results show that, when combined with CVI988, HVT and rHVTs confer a similar level of protection against MD (>90%) regardless of whether CVI988 was used at RD or at DD. However, the combination of rHVT with CVI988 at DD resulted in reduced replication rates of rHVT (60%-76% vs. 95%-100%). Our results show that such a negative effect could be avoided without jeopardizing MD protection by administering CVI988 at RD (if combined in ovo with rHVT) or administered rHVT first in ovo followed by CVI988 at DD at day of age.
Collapse
Affiliation(s)
- I M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC 27607,
| | - A L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC 27607
| | - A Reilley
- MSD Animal Health, Madison, NJ 07940
| | - T Barbosa
- MSD Animal Health, Madison, NJ 07940
| | | | - R Koopman
- MSD Animal Health, Madison, NJ 07940
| | - A Martinez
- Cobb-Vantress Inc., Siloam Springs, AR 72761
| |
Collapse
|
15
|
Bailey RI, Cheng HH, Chase-Topping M, Mays JK, Anacleto O, Dunn JR, Doeschl-Wilson A. Pathogen transmission from vaccinated hosts can cause dose-dependent reduction in virulence. PLoS Biol 2020; 18:e3000619. [PMID: 32134914 PMCID: PMC7058279 DOI: 10.1371/journal.pbio.3000619] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Many livestock and human vaccines are leaky because they block symptoms but do not prevent infection or onward transmission. This leakiness is concerning because it increases vaccination coverage required to prevent disease spread and can promote evolution of increased pathogen virulence. Despite leakiness, vaccination may reduce pathogen load, affecting disease transmission dynamics. However, the impacts on post-transmission disease development and infectiousness in contact individuals are unknown. Here, we use transmission experiments involving Marek disease virus (MDV) in chickens to show that vaccination with a leaky vaccine substantially reduces viral load in both vaccinated individuals and unvaccinated contact individuals they infect. Consequently, contact birds are less likely to develop disease symptoms or die, show less severe symptoms, and shed less infectious virus themselves, when infected by vaccinated birds. These results highlight that even partial vaccination with a leaky vaccine can have unforeseen positive consequences in controlling the spread and symptoms of disease.
Collapse
Affiliation(s)
- Richard I. Bailey
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
| | - Hans H. Cheng
- USDA, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Margo Chase-Topping
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Jody K. Mays
- USDA, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Osvaldo Anacleto
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
| | - John R. Dunn
- USDA, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Andrea Doeschl-Wilson
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
16
|
Rémy S, Le Pape G, Gourichon D, Gardin Y, Denesvre C. Chickens can durably clear herpesvirus vaccine infection in feathers while still carrying vaccine-induced antibodies. Vet Res 2020; 51:24. [PMID: 32093754 PMCID: PMC7041111 DOI: 10.1186/s13567-020-00749-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Marek’s disease (MD) is a major disease of chickens induced by Marek’s disease virus (MDV) associated to lethal lymphomas. Current MD vaccines protect against lymphomas, but fail to prevent infection and shedding. The control of MDV shedding is crucial in order to eradicate this highly contagious virus. Like pathogenic MDV, MD vaccines infect the feather follicles of the skin before being shed into the environment. MD vaccines constitute excellent models to study virus interaction with feathers, the unique excretion source of these viruses. Herein we studied the viral persistence in feathers of a MD vaccine, the recombinant turkey herpesvirus (rHVT-ND). We report that most of the birds showed a persistent HVT infection of feathers over 41 weeks with moderate viral loads. Interestingly, 20% of the birds were identified as low HVT producers, among which six birds cleared the infection. Indeed, after week 14–26, these birds named controllers had undetectable HVT DNA in their feathers through week 41. All vaccinated birds developed antibodies to NDV, which lasted until week 41 in 95% of the birds, including the controllers. No correlation was found between HVT loads in feathers and NDV antibody titers over time. Interestingly, no HVT DNA was detected in the spleens of four controllers. This is the first description of chickens that durably cleared MD vaccine infection of feathers suggesting that control of Mardivirus shedding is achievable by the host.
Collapse
Affiliation(s)
- Sylvie Rémy
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France
| | - Gilles Le Pape
- Anastats, 14 rue de la Bretonnerie, 37000, Tours, France
| | | | | | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France.
| |
Collapse
|
17
|
Biotic concerns in generating molecular diagnosis matrixes for 4 avian viruses with emphasis on Marek's disease virus. J Virol Methods 2019; 274:113708. [PMID: 31351169 PMCID: PMC7119753 DOI: 10.1016/j.jviromet.2019.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/18/2023]
Abstract
The great advance in the field of diagnosis of avian viruses is reflecting the highly sophisticated molecular assays of the human and general virology in providing highly sensitive and fast methods of diagnosis. The present review will discuss the biotic factors and the complexities that became evident with the evolution of the novel molecular diagnostic assays with emphasis on 4 avian viruses, chicken anemia, infectious laryngotracheitis, turkey meningoencephalitis, but mainly on Marek's disease virus. To create a biologically meaningful diagnosis, attention should be dedicated to various biotic factors and not only of the diagnostic assay. Included among the important factors are, (a) the sample examined and the sampling strategy, (b) the outcomes of the pathogen amplification ex vivo, (c) the sampling time and its reflection on the disease diagnosis, (d) the impact of simultaneous multiple virus-infections regarding the ability to demonstrate all pathogens and inter- and intra-interactions between the pathogens. A concerted consideration of the relevant factors and the use of advanced molecular diagnostic assay would yield biologically significant diagnosis in real-time that would beneficiate the poultry industry.
Collapse
|
18
|
Faiz NM, Cortes AL, Guy JS, Reddy SM, Gimeno IM. Differential attenuation of Marek’s disease virus-induced tumours and late-Marek’s disease virus-induced immunosuppression. J Gen Virol 2018; 99:927-936. [DOI: 10.1099/jgv.0.001076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nik M. Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aneg L. Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - James S. Guy
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Sanjay M. Reddy
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Isabel M. Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
19
|
Gall S, Kőrösi L, Cortes AL, Delvecchio A, Prandini F, Mitsch P, Gimeno IM. Use of real-time PCR to rule out Marek's disease in the diagnosis of peripheral neuropathy. Avian Pathol 2018; 47:427-433. [PMID: 29745244 DOI: 10.1080/03079457.2018.1473555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This article reports nine cases of neurological disease in brown layer pullets that occured in various European countries between 2015 and 2018. In all cases, the onset of neurological clinical signs was at 4-8 weeks of age and they lasted up to 22 weeks of age. Enlargement of peripheral nerves was the main lesion observed in all cases. Histopathological evaluation of nerves revealed oedema with moderate to severe infiltration of plasma cells. Marek's disease (MD) was ruled out by real-time PCR as none of the evaluated tissues had a high load of oncogenic MD virus (MDV) DNA, characteristics of MD. Based on the epidemiological data (layers with clinical signs starting at 5-8 weeks of age), gross lesions (peripheral nerve enlargement with a lack of tumours in other organs), histopathological lesions (oedema and infiltration of plasma cells), and no evidence of high load of MDV DNA, we concluded that those cases were due to peripheral neuropathy (PN). PN is an autoimmune disease easily misdiagnosed as MD, leading to a costly enforcement of the vaccination protocol. Additional vaccination against MD does not protect against PN and could worsen the clinical signs by over-stimulating the immune system. Differential diagnosis between PN and MD should always be considered in cases of neurological disease with enlargement of peripheral nerves as the only gross lesion. This case report shows for the first time how real-time PCR to detect oncogenic MDV is a very valuable tool in the differential diagnosis of PN and MD.
Collapse
Affiliation(s)
- Sesny Gall
- a Department of Population Health and Pathobiology, Veterinary School , North Carolina State University , Raleigh , NC , USA
| | | | - Aneg L Cortes
- a Department of Population Health and Pathobiology, Veterinary School , North Carolina State University , Raleigh , NC , USA
| | | | | | | | - Isabel M Gimeno
- a Department of Population Health and Pathobiology, Veterinary School , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
20
|
Davidson I, Natour-Altory A, Raibstein I, Kin E, Dahan Y, Krispin H, Elkin N. Monitoring the uptake of live avian vaccines by their detection in feathers. Vaccine 2017; 36:637-643. [PMID: 29287680 DOI: 10.1016/j.vaccine.2017.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/03/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Protection against diseases caused by the avian viruses, Marek's disease, Infectious laryngotracheitis, chicken anemia and turkey meningoencephalitis is achieved by live vaccines. The application quality is important to assure proper uptake in commercial flocks. We describe a novel evaluation method for the vaccination process by sequential monitoring the vaccine viruses in feathers. Feather collection is easy, non-invasive and non-lethal for the birds, therefore advantageous for monitoring purposes. To demonstrate the vaccine virus presence, an innovative assay of nested real-time amplification was approached because vaccine viruses presence in vivo is less abundant comparing to virulent wild-type isolates. The Marek's disease virus vaccine virus, Rispens/CVI988, in feathers of commercial flock was detected from 4 to 7 days and for at least 3 months post-vaccination, until the survey stopped. As the drinking water route was newly adopted for Infectious laryngotracheitis vaccination, one or two vaccine doses/bird were administered. The virus uptake was detected in feathers between 2 and 20 days-post-vaccination. With a doubled vaccine dose the positivity bird rate was higher. For the first time the chicken anemia vaccine virus presence in chicken feathers was demonstrated between 14 and 35 days-post-vaccination. No previous studies were available, thus in parallel to feathers the vaccine virus was demonstrated in the livers and spleens. The turkey meningoencephalitis vaccine virus uptake in turkey feather-pulps is even more innovative because this is the first turkey virus amplified from feather-pulps. The vaccine virus presence resemble the kinetics of the other 3 viruses, 3-21 days-post-vaccination. Detecting the specific antibodies following vaccination possessed a lower sensitivity than vaccine virus demonstration in feathers. In summary, the presented assay can be adopted for the quality evaluation of the vaccination process in poultry.
Collapse
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel.
| | | | - Israel Raibstein
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Eitan Kin
- Phibro Animal Health, Ltd., Bet Shemesh, Israel.
| | - Yaad Dahan
- Efrat Broiler Breeder Ltd., Granot, Gan Shmuel, Israel.
| | - Haim Krispin
- Yavne Hatcheries & Breeders Ltd., Kibutz Yavne, Israel.
| | - Nati Elkin
- Biovac, Biological Laboratories Ltd., Israel.
| |
Collapse
|
21
|
Adedeji AJ, Abdu PA, Luka PD, Owoade AA, Joannis TM. Application of loop-mediated isothermal amplification assay in the detection of herpesvirus of turkey (FC 126 strain) from chicken samples in Nigeria. Vet World 2017; 10:1383-1388. [PMID: 29263603 PMCID: PMC5732347 DOI: 10.14202/vetworld.2017.1383-1388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022] Open
Abstract
Aim: This study was designed to optimize and apply the use of loop-mediated isothermal amplification (LAMP) as an alternative to conventional polymerase chain reaction (PCR) for the detection of herpesvirus of turkeys (HVT) (FC 126 strain) in vaccinated and non-vaccinated poultry in Nigeria. Materials and Methods: HVT positive control (vaccine) was used for optimization of LAMP using six primers that target the HVT070 gene sequence of the virus. These primers can differentiate HVT, a Marek’s disease virus (MDV) serotype 3 from MDV serotypes 1 and 2. Samples were collected from clinical cases of Marek’s disease (MD) in chickens, processed and subjected to LAMP and PCR. Results: LAMP assay for HVT was optimized. HVT was detected in 60% (3/5) and 100% (5/5) of the samples analyzed by PCR and LAMP, respectively. HVT was detected in the feathers, liver, skin, and spleen with average DNA purity of 3.05-4.52 μg DNA/mg (A260/A280) using LAMP. Conventional PCR detected HVT in two vaccinated and one unvaccinated chicken samples, while LAMP detected HVT in two vaccinated and three unvaccinated corresponding chicken samples. However, LAMP was a faster and simpler technique to carry out than PCR. Conclusion: LAMP assay for the detection of HVT was optimized. LAMP and PCR detected HVT in clinical samples collected. LAMP assay can be a very good alternative to PCR for detection of HVT and other viruses. This is the first report of the use of LAMP for the detection of viruses of veterinary importance in Nigeria. LAMP should be optimized as a diagnostic and research tool for investigation of poultry diseases such as MD in Nigeria.
Collapse
Affiliation(s)
- A J Adedeji
- Viral Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - P A Abdu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - P D Luka
- Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - A A Owoade
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - T M Joannis
- Regional Laboratory for Animal Influenza and Other Transboundary Animal Diseases, National Veterinary Research Institute, Vom, Nigeria
| |
Collapse
|
22
|
Faiz NM, Cortes AL, Guy JS, Fletcher OJ, Cimino T, Gimeno IM. Evaluation of factors influencing the development of late Marek's disease virus-induced immunosuppression: virus pathotype and host sex. Avian Pathol 2017; 46:376-385. [PMID: 28151004 DOI: 10.1080/03079457.2017.1290214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Marek's disease virus (MDV) is a herpesvirus that induces lymphoma and immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is complex and can be divided into two phases: early-MDV-IS associated with cytolytic infection in the lymphoid organs in chickens lacking maternal antibodies against MDV (MAbs) and late-MDV-IS that appears later in the pathogenesis and occurs even in chickens bearing MAbs. We have recently developed a model to reproduce late-MDV-IS under laboratory conditions. This model evaluates late-MDV-IS indirectly by assessing the effect of MDV infection on the efficacy of infectious laryngotracheitis (ILT) vaccines against challenge with ILT virus. In the present study, we have used this model to investigate the role of two factors (MDV pathotype and host sex) on the development of late-MDV-IS. Five MDV strains representing three different pathotypes: virulent (vMDV; 617A, GA), very virulent (vvMDV; Md5), and very virulent plus (vv+MDV; 648A, 686), were evaluated. Only vv+ strains were able to induce late-MDV-IS. An immunosuppression rank (IS-rank) was established based on the ability of MDV to reduce the efficacy of chicken embryo origin vaccine (values go from 0 to 100, with 100 being the highest immunosuppressive ability). The IS-rank of the evaluated MDV strains ranged from 5.97 (GA) to 20.8 (617A) in the vMDV strains, 5.97 to 16.24 in the vvMDV strain Md5, and 39.08 to 68.2 in the vv+ strains 648A and 686. In this study both male and female chickens were equally susceptible to MDV-IS by vv+MDV 686. Our findings suggest that late-MDV-IS is a unique feature of vv+ strains.
Collapse
Affiliation(s)
- Nik M Faiz
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA.,b Department of Clinical Studies , College of Veterinary Medicine, Universiti Putra Malaysia , Selangor , Malaysia
| | - Aneg L Cortes
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - James S Guy
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - Oscar J Fletcher
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | | | - Isabel M Gimeno
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
23
|
Mete A, Gharpure R, Pitesky ME, Famini D, Sverlow K, Dunn J. Marek's Disease in Backyard Chickens, A Study of Pathologic Findings and Viral Loads in Tumorous and Nontumorous Birds. Avian Dis 2016; 60:826-836. [DOI: 10.1637/11458-062216-reg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Faiz NM, Cortes AL, Guy JS, Fogle JE, Gimeno IM. Efficacy of various Marek's disease vaccines protocols for prevention of Marek's disease virus-induced immunosuppression. Vaccine 2016; 34:4180-4187. [PMID: 27371103 DOI: 10.1016/j.vaccine.2016.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Marek's disease virus (MDV) induces tumors and severe immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is very complex and difficult to study. In particular, the late MDV-IS (late-MDV-IS) is of great concern since it can occur in the absence of lymphoid organ atrophy or gross tumors. We have recently developed a model to reproduce late-MDV-IS under laboratory conditions. This model measures MDV-IS indirectly by assessing the effect of MDV infection on the efficacy of infectious laryngotracheitis (ILT) vaccination; hence the name late-MDV-IS ILT model. In this study, we have used the late-MDV-IS ILT model to evaluate if MD vaccination can protect against late-MDV-IS. One experiment was conducted to determine whether serotype 1 MD vaccines (CVI988 and Md5ΔMEQ) could induce late-MDV-IS by themselves. Three additional experiments were conducted to evaluate efficacy of different MD vaccines (HVT, HVT+SB-1, CVI988, and Md5ΔMEQ) and different vaccine protocols (day-old vaccination, in ovo vaccination, and double vaccination) against late-MDV-IS. Our results show that none of the currently used vaccine protocols (HVT, HVT+SB-1, or CVI988 administered at day of age, in ovo, or in double vaccination protocols) protected against late-MDV-IS induced by vv+MDV strains 648A and 686. Experimental vaccine Md5ΔMEQ administered subcutaneously at one day of age was the only vaccine protocol that significantly reduced late-MDV-IS induced by vv+MDV strain 686. This study demonstrates that currently used vaccine protocols confer high levels of protection against MDV-induced tumors (protection index=100), but do not protect against late-MDV-IS; thus, commercial poultry flocks could suffer late-MDV-IS even in complete absence of tumors. Our results suggest that MDV-IS might not be related to the development of tumors and novel control methods are needed. Further evaluation of the experimental vaccine Md5ΔMEQ might shed light on protective mechanisms against late-MDV-IS.
Collapse
Affiliation(s)
- Nik M Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - James S Guy
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
25
|
Zhang YP, Lv HC, Bao KY, Gao YL, Gao HL, le Qi X, Cui HY, Wang YQ, Li K, Gao L, Wang XM, Liu CJ. Molecular and pathogenicity characterization of Gallid herpesvirus 2 newly isolated in China from 2009 to 2013. Virus Genes 2015; 52:51-60. [PMID: 26611441 DOI: 10.1007/s11262-015-1264-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
During the course of our continuous surveillance of Gallid herpesvirus 2 (GaHV-2), 44 isolates were obtained from GaHV-2-positive chickens of different flocks in China from 2009 to 2013. The meq gene, considered as a major GaHV-2 oncogene, was sequenced and was found to contain an open reading frame of 1020 nucleotides encoding a 339 amino acid (aa) polypeptide in all isolates. Compared with the GaHV-2 GA strain, the meq genes in 15.9 % (7/44) of the isolates analyzed in this study contained an aa substitution mutation at position 88 (A to T) of which is the first report. The main characteristics of Chinese GaHV-2 isolates meq genes included the substitutions K77E, D80Y, V115A, T139A, P176R, and P217A, and the aa substitution frequency at positions 139 and 176 showed an increase. To test the pathogenicity of the isolates, a pathogenicity study and a vaccination-challenge test were performed on three selected isolates (ZY/1203, WC/1203, and WC/1110) and reference strain GA. The results showed that the three isolates induced gross Marek's disease (MD) lesions in 95.0-100 % cases, which was a higher rate than that obtained for strain GA (82.4 %). Three isolates induced mortality in 10-21.1 % of specific-pathogen-free chickens, which was similar to results with strain GA (23.5 %). The commercially available CVI988 vaccine induced lower protective indices (PIs) against ZY/1203 (82.4) and WC/1110 (83.3) as compared to those against WC/1203 (100) and GA (100). These results showed an evolving trend in the meq genes of the isolates; three isolates exhibited higher morbidity as compared to the reference strain and the vaccine induced lower PIs against two isolates as compared to that against the reference strain.
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Chao Lv
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Ke-Yan Bao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Yu-Long Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Lei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Xiao- le Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Yu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Yong-Qiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Xiao-Mei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Chang-Jun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| |
Collapse
|
26
|
Gimeno IM, Cortes AL, Faiz NM, Barbosa T, Villalobos T. Evaluation of Factors Influencing Efficacy of Vaccine Strain CVI988 Against Marek’s Disease in Meat-Type Chickens. Avian Dis 2015; 59:400-9. [DOI: 10.1637/11085-040915-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Denesvre C, Dumarest M, Rémy S, Gourichon D, Eloit M. Chicken skin virome analyzed by high-throughput sequencing shows a composition highly different from human skin. Virus Genes 2015. [PMID: 26223320 DOI: 10.1007/s11262-015-1231-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics.
Collapse
Affiliation(s)
- Caroline Denesvre
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOlogy of Avian Viruses Team, 37380, Nouzilly, France.
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, 75015, Paris, France
| | - Sylvie Rémy
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOlogy of Avian Viruses Team, 37380, Nouzilly, France
| | - David Gourichon
- INRA, Pôle d'expérimentation avicole de Tours, 37380, Nouzilly, France
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, 75015, Paris, France. .,PathoQuest, Paris, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
28
|
Rauw F, Van Borm S, Welby S, Ngabirano E, Gardin Y, Palya V, Lambrecht B. Quantification of rHVT-F genome load in feather follicles by specific real-time qPCR as an indicator of NDV-specific humoral immunity induced by day-old vaccination in SPF chickens. Avian Pathol 2015; 44:154-61. [PMID: 25687165 DOI: 10.1080/03079457.2015.1018869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to look for a reliable molecular method for confirmation of uptake of recombinant turkey herpesvirus vaccine against Newcastle disease (rHVT-F) and for use as a valuable prediction tool of Newcastle disease virus (NDV)-specific immune response in chickens deprived of maternally derived antibody (MDA). A quantitative real-time polymerase chain reaction (real-time qPCR) specific to rHVT-F was developed. The method was applied to various tissue samples taken from specific pathogen free (SPF) chickens experimentally inoculated at day-old with one dose of rHVT-F vaccine over a 6-week period. Among the tested tissues, the rHVT-F vaccine was detected predominantly in the bursa of Fabricius (BF) and the lung for the first week, followed by a progressive decline from 9 days onwards. Then, an increase of genome load was observed in the feather follicles (FF) with a peak at 2 weeks, rising to a level almost 10(3)-fold greater than in the other tissues. Importantly, the rHVT-F genome load in FF appeared to be strongly correlated to the humoral immunity specific to NDV as evaluated by haemagglutination inhibition (HI) test and NDV-specific IgG, IgM and IgA ELISAs. This is the first report of quantification of rHVT-F vaccine in FF and its correlation with the induction of ND-specific immune response in chickens with no MDA. Our data indicate that the application of this real-time qPCR assay on FF samples taken from chickens in the field may be used to confirm rHVT-F vaccine administration and uptake with the important added benefit of offering a non-disruptive sampling procedure.
Collapse
Affiliation(s)
- F Rauw
- a Veterinary and Agrochemical Research Centre (VAR) , Ukkel , Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Dunn JR, Auten K, Heidari M, Buscaglia C. Correlation between Marek's disease virus pathotype and replication. Avian Dis 2014; 58:287-92. [PMID: 25055634 DOI: 10.1637/10678-092513-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) virus (MDV) is an alphaherpesvirus that causes MD, a lymphoproliferative disease in chickens. Pathotyping has become an increasingly important assay for monitoring shifts in virulence of field strains; however, it is time-consuming and expensive, and alternatives are needed to provide fast answers in the face of current outbreaks. The purpose of this study was to determine whether differences in virus replication between pathotypes that have been reported using a small number of virulent (v) and very virulent plus (vv+) MDV strains could be confirmed with a large collection of MD viruses. Based on pilot study data, bursa, brain, and lung samples were collected at 9 and 11 days postinoculation (dpi) from birds challenged with 1 of 15 MDV strains. The correlation between virus replication and virulence was confirmed between vMDV strains and higher virulent strains, but in most cases, there was no significant difference between very virulent (vv) and vv+MDV groups. At both 9 and 11 dpi, chickens infected with vv and vv+MDV had significantly lower body weights and relative thymus and bursa weights compared with chickens challenged with vMDV. However, similar to virus quantity, there was no significant difference between weights in birds challenged with vv or vv+MDV. The significant differences observed in maternal antibody negative (ab-) chickens were not significant in maternal antibody positive (ab+) chickens, demonstrating the requirement of ab- birds for this type of comparison. These data do not support the use of virus replication or organ weights as an alternative to pathotyping for discrimination between all three virulent MDV pathotypes but may be useful for determining a virus replication threshold to choose which field strains meet a minimum virulence to be pathotyped by traditional methods.
Collapse
|
30
|
Gimeno IM, Dunn JR, Cortes AL, El-Gohary AEG, Silva RF. Detection and Differentiation of CVI988 (Rispens Vaccine) from Other Serotype 1 Marek's Disease Viruses. Avian Dis 2014; 58:232-43. [DOI: 10.1637/10666-091713-reg.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Couteaudier M, Denesvre C. Marek's disease virus and skin interactions. Vet Res 2014; 45:36. [PMID: 24694064 PMCID: PMC4030002 DOI: 10.1186/1297-9716-45-36] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/10/2014] [Indexed: 12/21/2022] Open
Abstract
Marek's disease virus (MDV) is a highly contagious herpesvirus which induces T-cell lymphoma in the chicken. This virus is still spreading in flocks despite forty years of vaccination, with important economical losses worldwide. The feather follicles, which anchor feathers into the skin and allow their morphogenesis, are considered as the unique source of MDV excretion, causing environmental contamination and disease transmission. Epithelial cells from the feather follicles are the only known cells in which high levels of infectious mature virions have been observed by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and dust are today considered excellent materials to monitor vaccination, spread of pathogenic viruses, and environmental contamination. This article reviews the current knowledge on MDV-skin interactions and discusses new approaches that could solve important issues in the future.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, F-37380 Nouzilly, France
| | - Caroline Denesvre
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, F-37380 Nouzilly, France
| |
Collapse
|
32
|
Cao W, Mays J, Dunn J, Fulton R, Silva R, Fadly A. Use of Polymerase Chain Reaction in Detection of Marek's Disease and Reticuloendotheliosis Viruses in Formalin-Fixed, Paraffin-Embedded Tumorous Tissues. Avian Dis 2013; 57:785-9. [DOI: 10.1637/10542-032713-resnote.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Davidson I, Raibshtein I, Al-Touri A. Quantitation of Marek's Disease and Chicken Anemia Viruses in Organs of Experimentally Infected Chickens and Commercial Chickens by Multiplex Real-Time PCR. Avian Dis 2013; 57:532-8. [DOI: 10.1637/10418-101012-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Gimeno IM, Witter RL, Cortes AL, Reddy SM, Pandiri AR. Standardization of a model to study revaccination against Marek's disease under laboratory conditions. Avian Pathol 2012; 41:59-68. [PMID: 22845322 DOI: 10.1080/03079457.2011.635636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Revaccination, the practice of administering Marek's disease (MD) vaccine a second time, has been used in commercial poultry flocks for many years. The rationale is largely anecdotal as the few published reports have failed to provide support for the value of the practice. In the present work, we have standardized a model to study MD revaccination under laboratory conditions. Nine bird experiments were conducted to evaluate homologous revaccination (same vaccine administered twice) and heterologous revaccination (administration of two different vaccines) with various challenge models. Our results demonstrated that heterologous revaccination (with a second vaccine more protective than the first vaccine) but not homologous revaccination provided a beneficial increase in protection. Administration of the first vaccine at 18 days of embryonation followed by a more protective second vaccine at hatch reproduced systematically the benefits of revaccination. In addition, our results show that revaccination protocols might aid in solving major drawbacks associated with various highly protective experimental MD vaccines; that is, lymphoid organ atrophy and residual virulence. Strain RM1 is one of the most protective vaccines against early challenge with highly virulent MD virus but it induces severe lymphoid atrophy in chickens lacking maternal antibodies against MD virus. In this study, strain RM1 did not induce lymphoid organ atrophy when administered as second vaccine in a revaccination protocol. Similarly, strain 648A100/BP5 maintains residual virulence in chickens lacking maternal antibodies against MD virus but did not induce any lesions when used as a second vaccine. Until now, arbitrary revaccination protocols have been occasionally proven useful to the poultry industry. The model developed in this study will allow for a better understanding of this phenomenon and its optimization. A more rational use of this practice will be of great help to control MD outbreaks until better vaccines are available.
Collapse
Affiliation(s)
- Isabel M Gimeno
- Population Health and Pathobiology Department, College of Veterinary Medicine, North Carolina State University, Raleigh, USA.
| | | | | | | | | |
Collapse
|
35
|
Gimeno IM, Cortes AL, Witter RL, Pandiri AR. Optimization of the Protocols for Double Vaccination Against Marek's Disease by Using Commercially Available Vaccines: Evaluation of Protection, Vaccine Replication, and Activation of T Cells. Avian Dis 2012; 56:295-305. [DOI: 10.1637/9930-091311-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Gimeno IM, Cortes AL, Guy JS, Turpin E, Williams C. Replication of recombinant herpesvirus of turkey expressing genes of infectious laryngotracheitis virus in specific pathogen free and broiler chickens followingin ovoand subcutaneous vaccination. Avian Pathol 2011; 40:395-403. [DOI: 10.1080/03079457.2011.588196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Gimeno IM, Cortes AL, Montiel ER, Lemiere S, Pandiri AKR. Effect of Diluting Marek's Disease Vaccines on the Outcomes of Marek's Disease Virus Infection When Challenged with Highly Virulent Marek's Disease Viruses. Avian Dis 2011; 55:263-72. [DOI: 10.1637/9579-101510-reg.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|