1
|
Patria JN, Jwander L, Mbachu I, Parcells L, Ladman B, Trimpert J, Kaufer BB, Tavlarides-Hontz P, Parcells MS. The Meq Genes of Nigerian Marek's Disease Virus (MDV) Field Isolates Contain Mutations Common to Both European and US High Virulence Strains. Viruses 2024; 17:56. [PMID: 39861844 PMCID: PMC11769123 DOI: 10.3390/v17010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus Mardivirus. MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains. Mutations common to field strains that can overcome vaccine protection were identified in the C-terminal proline-rich repeats of the oncoprotein Meq (Marek's EcoRI-Q-encoded protein). These mutations in meq have been found to be distinct to their region of origin, with high virulence strains obtained in Europe differing from those having evolved in the US. The present work reports on meq mutations identified in MDV field strains in Nigeria, arising at farms employing different vaccination practices. MATERIALS AND METHODS DNA was isolated from FTA cards obtained at 12 farms affected by increased MD in the Plateau State, Nigeria. These sequences included partial whole genomes as well as targeted sequences of the meq oncogenes from these strains. Several of the meq genes were cloned for expression and their localization ability to interact with the chicken NF-IL3 protein, a putative Meq dimerization partner, were assessed. RESULTS Sequence analysis of the meq genes from these Nigerian field strains revealed an RB1B-like lineage co-circulating with a European Polen5-like lineage, as well as recombinants harboring a combination of these mutations. In a number of these isolates, Meq mutations accumulated in both N-terminal and C-terminal domains. DISCUSSION Our data, suggest a direct effect of the vaccine strategy on the selection of Meq mutations. Moreover, we posit the evolution of the next higher level of virulence MDVs, a very virulent plus plus pathotype (vv++).
Collapse
Affiliation(s)
- Joseph N. Patria
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Luka Jwander
- Central Diagnostic Laboratory, National Veterinary Research Institute, Vom 930101, Nigeria;
| | - Ifeoma Mbachu
- Department of Biological Sciences, Lincoln University, Lincoln University, PA 19352, USA;
| | - Levi Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Brian Ladman
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (J.T.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (J.T.); (B.B.K.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Phaedra Tavlarides-Hontz
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Mark S. Parcells
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| |
Collapse
|
2
|
Zhu ZJ, Teng M, Liu Y, Chen FJ, Yao Y, Li EZ, Luo J. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses. NPJ Vaccines 2024; 9:109. [PMID: 38879650 PMCID: PMC11180173 DOI: 10.1038/s41541-024-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yu Liu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Fu-Jia Chen
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - En-Zhong Li
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China.
| | - Jun Luo
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China.
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
- Longhu Laboratory, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Davidson I, Lupini C, Catelli E, Quaglia G, Maddaloni L, Mescolini G. Virulence evaluation of Israeli Marek's disease virus isolates from commercial poultry using their meq gene sequence. Virus Genes 2024; 60:32-43. [PMID: 38184501 DOI: 10.1007/s11262-023-02042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/08/2024]
Abstract
Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990-2019) from commercial poultry flocks affected by Marek's disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.
Collapse
Affiliation(s)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, Rome, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Operating Unit of Animal Health and Hygiene of Livestock Production, Department of Public Health, AUSL della Romagna, Forlì, FC, Italy
| |
Collapse
|
4
|
Motai Y, Murata S, Sato J, Nishi A, Maekawa N, Okagawa T, Konnai S, Ohashi K. Characterization of a Very Short Meq Protein Isoform in a Marek's Disease Virus Strain in Japan. Vet Sci 2024; 11:43. [PMID: 38275925 PMCID: PMC10818563 DOI: 10.3390/vetsci11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Marek's disease virus (MDV) causes malignant lymphoma (Marek's disease; MD) in chickens. The Meq protein is essential for tumorigenesis since it regulates the expression of host and viral genes. Previously, we reported that the deletion of the short isoform of Meq (S-Meq) decreases the pathogenicity of MDV. Recently, we identified a further short isoform of Meq (very short isoform of Meq, VS-Meq) in chickens with MD in Japan. A 64-amino-acid deletion was confirmed at the C-terminus of VS-Meq. We measured the transcriptional regulation by VS-Meq in three gene promoters to investigate the effect of VS-Meq on protein function. Wild-type VS-Meq decreased the transrepression of the pp38 promoter but did not alter the transactivation activity of the Meq and Bcl-2 promoters. The deletion in VS-Meq did not affect the activity of the pp38 promoter but enhanced the transactivation activities of the Meq and Bcl-2 promoters. Collectively, the deletion of VS-Meq potentially enhanced the activity of the Meq promoter, while other amino acid sequences in wild-type VS-Meq seemed to affect the weak transrepression of the pp38 promoter. Further investigation is required to clarify the effects of these changes on pathogenicity.
Collapse
Affiliation(s)
- Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Akihito Nishi
- Chuo Livestock Hygiene Service Center, Agriculture Promotion Department, Kochi Prefecture, 3229 Otsu, Takaoka-cho, Tosa 781-1102, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
5
|
Oluwayinka EB, Otesile EB, Oni OO, Ajayi OL, Dunn JR. Molecular characterization and phylogenetic analysis of Marek's disease virus in chickens from Ogun State, Nigeria. Avian Pathol 2023; 52:401-411. [PMID: 37605844 DOI: 10.1080/03079457.2023.2243838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Marek's disease (MD) is caused by oncogenic MD virus serotype 1 (MDV1) and is characterized by lymphoproliferative lesions resulting in high morbidity and mortality in chickens. Despite being ubiquitous on poultry farms, there is a dearth of information on its molecular characteristics in Nigeria. This study aimed at characterizing three virulence genes (Meq, pp38, and vIL-8) of MDV1 from chickens in Ogun state, Nigeria. Blood, feather quill, and tumour samples of chickens from different commercial poultry farms in Ogun State were pooled, spotted on 107 FTA cards, and screened for MDV1 by polymerase chain reaction (PCR). Phylogenetic analysis was carried out to compare Nigerian MDV1 Meq, pp38, and vIL-8 genes sequences with the published references. Thirteen samples were MDV1-positive and the Meq, as well as pp38, and vIL-8 genes from the different samples were 100% identical. The Meq genes contained 339 amino acids (aa) with three PPPP motifs in the transactivation domain and two interruptions of the PPPP motifs due to proline-to-arginine substitutions at positions 176 and 217 resulting in a 20.88% proline composition. Phylogenetic analysis revealed that the Meq gene clustered with strains from Egypt and very virulent ATE2539 strain from Hungary. Mutations were observed in the pp38 protein (at positions 107 and 109) and vIL-8 protein (at positions 4 and 31). Based on the molecular analysis of the three genes, the results indicate the presence of MDV1 with virulence signatures; therefore, further studies on in vivo pathotyping of Nigerian MDV1 from all states should be performed.RESEARCH HIGHLIGHTS Meq, pp38 and vIL-8 genes were 100% identical between Nigerian MDV strains.Proline content in Nigerian meq gene was 20.88% with two PPPP motifs interruptions.Meq, pp38 and vIL-8 genes of Nigerian MDV were similar to Egyptian and Indian strains.
Collapse
Affiliation(s)
- E B Oluwayinka
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - E B Otesile
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - O O Oni
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - O L Ajayi
- Department of Veterinary Pathology, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - J R Dunn
- US National Poultry Research Center, Athens, GA, USA
| |
Collapse
|
6
|
Cherif A, Basharat Z, Yaseen M, Bhat MA, Uddin I, Ziedan NI, Mabood F, Sadfi-Zouaoui N, Messaoudi A. Identification of Disalicyloyl Curcumin as a Potential DNA Polymerase Inhibitor for Marek's Disease Herpesvirus: A Computational Study Using Virtual Screening and Molecular Dynamics Simulations. Molecules 2023; 28:6576. [PMID: 37764352 PMCID: PMC10537106 DOI: 10.3390/molecules28186576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Marek's disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of -12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease.
Collapse
Affiliation(s)
- Aziza Cherif
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
| | | | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Imad Uddin
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Noha I. Ziedan
- Department of Physical Mathematical and Engineering Science, University of Chester, Chester CH2 4NU, UK;
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Najla Sadfi-Zouaoui
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
| | - Abdelmonaem Messaoudi
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
- Higher Institute of Biotechnology of Beja, Jendouba University, Habib Bourguiba Street, Beja 9000, Tunisia
| |
Collapse
|
7
|
Hosseini H, Kafi ZZ, Sadri N, Morshed R, Tolouei T, Ghalyanchilangeroudi A. Marek's Disease Virus in Commercial Turkey Flocks, Iran. Avian Dis 2023; 67:269-272. [PMID: 39126414 DOI: 10.1637/aviandiseases-d-23-00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2024]
Abstract
Marek's disease is a significant illness in chickens and a potential threat to the poultry industry worldwide. Marek's disease virus (MDV) causes immunosuppression and lymphoproliferative disease in chickens, but the turkey is an unusual host for the virus, and tumors caused by MDV in turkeys are unique. This study sampled 15 asymptomatic commercial turkey flocks (five spleens from each flock) at slaughter. Gallid alphaherpesvirus 2 (GaHV-2) was identified by PCR of spleen samples of two flocks. A phylogenetic analysis of the Meq gene was also performed. Sequencing and phylogenetic analysis revealed that the turkey GaHV-2 had genetic similarity with GaHV-2 strains recently detected in the Iranian commercial layer and breeder turkey flocks. This is the first time MDV has been detected in turkey flocks of Iran, and therefore, further assays including experimental inoculation to demonstrate pathotype characteristics in vivo are needed.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Islamic Azad, Karaj, Iran, 3149968111
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111
| | - Naser Sadri
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111
| | - Rima Morshed
- Department of Basic Science, Faculty of Encyclopedia, Institute for Humanities and Cultural Studies, Tehran, Iran 1997743881
| | - Tohid Tolouei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111,
| |
Collapse
|