1
|
Dangoudoubiyam S, Norris JK, Namasivayam S, de Paula Baptista R, Cannes do Nascimento N, Camp J, Schardl CL, Kissinger JC, Howe DK. Temporal gene expression during asexual development of the apicomplexan Sarcocystis neurona. mSphere 2024; 9:e0011124. [PMID: 38809064 PMCID: PMC11332336 DOI: 10.1128/msphere.00111-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Asexual replication in the apicomplexan Sarcocystis neurona involves two main developmental stages: the motile extracellular merozoite and the sessile intracellular schizont. Merozoites invade host cells and transform into schizonts that undergo replication via endopolygeny to form multiple (64) daughter merozoites that are invasive to new host cells. Given that the capabilities of the merozoite vary significantly from the schizont, the patterns of transcript levels throughout the asexual lifecycle were determined and compared in this study. RNA-Seq data were generated from extracellular merozoites and four intracellular schizont development time points. Of the 6,938 genes annotated in the S. neurona genome, 6,784 were identified in the transcriptome. Of these, 4,111 genes exhibited significant differential expression between the merozoite and at least one schizont development time point. Transcript levels were significantly higher for 2,338 genes in the merozoite and 1,773 genes in the schizont stages. Included in this list were genes encoding the secretory pathogenesis determinants (SPDs), which encompass the surface antigen and SAG-related sequence (SAG/SRS) and the secretory organelle proteins of the invasive zoite stage (micronemes, rhoptries, and dense granules). As anticipated, many of the S. neurona SPD gene transcripts were abundant in merozoites. However, several SPD transcripts were elevated in intracellular schizonts, suggesting roles unrelated to host cell invasion and the initial establishment of the intracellular niche. The hypothetical genes that are potentially unique to the genus Sarcocystis are of particular interest. Their conserved expression patterns are instructive for future investigations into the possible functions of these putative Sarcocystis-unique genes. IMPORTANCE The genus Sarcocystis is an expansive clade within the Apicomplexa, with the species S. neurona being an important cause of neurological disease in horses. Research to decipher the biology of S. neurona and its host-pathogen interactions can be enhanced by gene expression data. This study has identified conserved apicomplexan orthologs in S. neurona, putative Sarcocystis-unique genes, and gene transcripts abundant in the merozoite and schizont stages. Importantly, we have identified distinct clusters of genes with transcript levels peaking during different intracellular schizont development time points, reflecting active gene expression changes across endopolygeny. Each cluster also has subsets of transcripts with unknown functions, and investigation of these seemingly Sarcocystis-unique transcripts will provide insights into the interesting biology of this parasite genus.
Collapse
Affiliation(s)
- Sriveny Dangoudoubiyam
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Jamie K. Norris
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Sivaranjani Namasivayam
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Rodrigo de Paula Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Naila Cannes do Nascimento
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Joseph Camp
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | | | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Daniel K. Howe
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health-A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023; 12:937. [PMID: 37513784 PMCID: PMC10385039 DOI: 10.3390/pathogens12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The impacts of climate change on the health of marine mammals are increasingly being recognised. Given the rapid rate of environmental change in the Arctic, the potential ramifications on the health of marine mammals in this region are a particular concern. There are eleven endemic Arctic marine mammal species (AMMs) comprising three cetaceans, seven pinnipeds, and the polar bear (Ursus maritimus). All of these species are dependent on sea ice for survival, particularly those requiring ice for breeding. As air and water temperatures increase, additional species previously non-resident in Arctic waters are extending their ranges northward, leading to greater species overlaps and a concomitant increased risk of disease transmission. In this study, we review the literature documenting disease presence in Arctic marine mammals to understand the current causes of morbidity and mortality in these species and forecast future disease issues. Our review highlights potential pathogen occurrence in a changing Arctic environment, discussing surveillance methods for 35 specific pathogens, identifying risk factors associated with these diseases, as well as making recommendations for future monitoring for emerging pathogens. Several of the pathogens discussed have the potential to cause unusual mortality events in AMMs. Brucella, morbillivirus, influenza A virus, and Toxoplasma gondii are all of concern, particularly with the relative naivety of the immune systems of endemic Arctic species. There is a clear need for increased surveillance to understand baseline disease levels and address the gravity of the predicted impacts of climate change on marine mammal species.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Steven H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada;
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| | - Peter O. Thomas
- Marine Mammal Commission, 4340 East-West Highway, Room 700, Bethesda, MD 20814, USA;
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| |
Collapse
|
3
|
Faria JF, Harris DJ. An unexpected tenant: contamination in a Physeter catodon (Physeteridae, Artiodactyla) genome indicates undescribed species of Sarcocystis Lankester, 1882 (Sarcocystidae, Eucoccidiorida) in the marine environment. Folia Parasitol (Praha) 2022; 69. [PMID: 35145047 DOI: 10.14411/fp.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Data mining animal of genomes has been used before to identify endoparasites, and may be a particularly useful tool to surpass some difficulties faced by studies in the marine environment. We detected a species of Sarcocystis Lankester, 1882, contamination in the sperm whale (Physeter catodon Linnaeus) reference genome available in the GenBank database. We identified and extracted multiple gene fragments and placed the sequences in a phylogenetic framework. Our results indicate that the sequences of Sarcocystis sp. found in the genome do not correspond to any currently described species, despite a few other similar sequences having been identified in fur seals (Pinnipedia) and another sperm whale. Including data from previous studies, we suggest there is enough evidence to support the occurrence of at least four species of Sarcocystis in marine mammals. We also demonstrate that the term "S. canis-like" has been used for samples not closely related to Sarcocystis canis Dubey et Speer, 1991.
Collapse
Affiliation(s)
- Joaquim Filipe Faria
- Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal.,CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairao, Vairao, Vila do Conde, Portugal
| | - David James Harris
- Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal.,CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairao, Vairao, Vila do Conde, Portugal
| |
Collapse
|
4
|
Whoriskey ST, Duignan PJ, McClain AM, Seguel M, Gulland FMD, Johnson SP, Field CL. Clinical signs, treatment, and outcome for California sea lions (Zalophus californianus) with Sarcocystis-associated polyphasic rhabdomyositis. J Am Vet Med Assoc 2021; 259:1196-1205. [PMID: 34727074 DOI: 10.2460/javma.20.06.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe clinical signs, treatment, and outcome for California sea lions (Zalophus californianus) with Sarcocystis-associated polyphasic rhabdomyositis. ANIMALS 38 free-ranging juvenile to adult California sea lions examined at a rehabilitation center in California between September 2015 and December 2017. PROCEDURES Medical records at The Marine Mammal Center were reviewed to identify sea lions in which sarcocystosis had been diagnosed. RESULTS Clinical signs were highly variable and associated with polyphasic rhabdomyositis attributed to Sarcocystis neurona infection. Generalized severe muscle wasting, respiratory compromise, and regurgitation secondary to megaesophagus were the most profound clinical findings. Respiratory compromise and megaesophagus were associated with a poor prognosis. Eight of the 38 sea lions were treated and released to the wild, and 2 subsequently restranded and were euthanized. Two additional animals received no targeted treatment and were released. The remaining 28 animals were either euthanized or died during treatment. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that unlike other marine mammals, which typically develop encephalitis, California sea lions with sarcocystosis often have polyphasic rhabdomyositis with highly variable clinical signs and that extensive diagnostic testing may be required to confirm the diagnosis. Treatment with an antiprotozoal drug in combination with corticosteroids may resolve clinical disease, but the prognosis is guarded.
Collapse
|
5
|
EARLY-ONSET LEUKOENCEPHALOMYELOPATHY AND POLYNEUROPATHY IN EASTERN QUOLLS ( DASYURUS VIVERRINUS) IN THE EUROPEAN CAPTIVE POPULATION. J Zoo Wildl Med 2021; 51:1035-1046. [PMID: 33480587 DOI: 10.1638/2020-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
Leukoencephalomyelopathy (LEM) is suggested to be an age-related degenerative condition in geriatric Eastern quolls (Dasyurus viverrinus), manifesting in animals greater than 3.5 yr of age. This case series describes four LEM cases from two zoologic collections; three in nongeriatric animals, with one only 1 yr of age, and details advanced diagnostic investigation, including magnetic resonance imaging, cerebrospinal fluid analysis, and electrodiagnostic studies, not previously reported in Eastern quolls. Animals presented clinically with forelimb proprioceptive deficits and hindlimb and lumbar muscle hypotrophy, which were not noted in previous reports, in addition to hindlimb ataxia. Blindness and emaciation, which have been reported previously, were not seen. Disease progression was variable, and time from first clinical signs to euthanasia ranged from 46 days to over 2 yr. Histopathologic findings in the central nervous system were typical of those in previous LEM cases; concomitant polyneuropathy was observed in two quolls. Our findings suggest that age-related degeneration may not be the only cause of LEM in Eastern quolls. Because all quolls were related, a familial component cannot be excluded. LEM should be further investigated for its potential impact on future captive breeding programs, and our findings suggest that daily quality-of-life assessment should guide euthanasia of affected animals.
Collapse
|
6
|
Reiling SJ, Measures L, Feng S, Boone R, Merks H, Dixon BR. Toxoplasma gondii, Sarcocystis sp. and Neospora caninum-like parasites in seals from northern and eastern Canada: potential risk to consumers. Food Waterborne Parasitol 2019; 17:e00067. [PMID: 32095635 PMCID: PMC7033983 DOI: 10.1016/j.fawpar.2019.e00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Zoonotic parasites of seals that are harvested for food may pose a health risk when seal meat or organ tissues of infected animals are eaten raw or undercooked. In this study, 124 tissue samples from 81 seals, comprising four species, were collected from northern and eastern Canada. Tissues from 23 ringed seals (Pusa hispida), 8 hooded seals (Cystophora cristata), 21 harp seals (Pagophilus groenlandicus), and 29 grey seals (Halichoerus grypus) were tested for parasites of the Sarcocystidae family including Toxoplasma gondii, Sarcocystis spp., and Neospora spp. using nested PCR followed by Sanger sequencing. Toxoplasma gondii DNA was present in 26% of ringed seals, 63% of hooded seals, 57% of harp seals, and 31% of grey seals. Sarcocystis sp. DNA was found in 9% of ringed seals, 13% of hooded seals, 14% of harp seals, and 4% of grey seals, while N. caninum-like DNA was present in 26% of ringed seals. While it is unclear how pinnipeds may become infected with these protozoans, horizontal transmission is most likely. However, one harp seal pup (4 days old) was PCR-positive for T. gondii, suggesting vertical transmission may also occur. Phylogenetic analysis of the 18S gene region indicates that Sarcocystis sp. in these seals belongs to a unique genotype. Furthermore, this study represents a new host report for T. gondii in harp seals, a new host and geographic report for N. caninum-like parasites in ringed seals, and four new hosts and geographic reports for Sarcocystis sp. These results demonstrate that parasites of the Sarcocystidae family are prevalent in northern and eastern Canadian seals. While the zoonotic potential of Sarcocystis sp. and the N. caninum-like parasite are unclear, consumption of raw or undercooked seal meat or organ tissues pose a risk of T. gondii infection to consumers. Tissues from ringed, hooded, harp and grey seals in Canada were PCR-positive for Toxoplasma, Sarcocystis and Neospora. Raw or undercooked seal meat may pose a risk for zoonotic transmission of T. gondii to consumers. The risk for zoonotic transmission of Sarcocystis sp. and the Neospora caninum-like parasite is unknown.
Collapse
Affiliation(s)
- Sarah J. Reiling
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Lena Measures
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, G5H 3Z4, Canada
| | - Sandy Feng
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Ryan Boone
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Harriet Merks
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Brent R. Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada
- Corresponding author. Address: 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
7
|
SARCOCYSTIS NEURONA-ASSOCIATED MENINGOENCEPHALITIS IN A PACIFIC WALRUS ( ODOBENDUS ROSMARUS DIVERGENS). J Zoo Wildl Med 2019; 48:1219-1222. [PMID: 29297810 DOI: 10.1638/2017-0093.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 21-yr-old intact male walrus ( Odobendus rosmarus divergens) presented with acute onset of shifting lameness, initially associated with breeding behaviors. Further clinical signs manifested, including muscle tremors, anorexia, hematuria, and coughing. Diagnostics were limited, as the animal would not offer behaviors for voluntary sample collection. Signs were addressed with anti-inflammatories, anticonvulsants, and antibiotics. The walrus developed cluster seizures and ultimately, respiratory and cardiac arrest. Postmortem lesions included meningoencephalitis with intra- and extracellular protozoal zoites and schizonts, as well as interstitial pneumonia with intraendothelial protozoa. Immunolabeling of the protozoal organisms revealed Sarcocystis neurona. Previous S. neurona infections in an odobenid have not been reported. Protozoal infection should be considered in all species of captive marine mammals with nonspecific orthopedic, neurological, and respiratory clinical signs.
Collapse
|
8
|
Girard YA, Johnson CK, Fritz HM, Shapiro K, Packham AE, Melli AC, Carlson-Bremer D, Gulland FM, Rejmanek D, Conrad PA. Detection and characterization of diverse coccidian protozoa shed by California sea lions. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:5-16. [PMID: 27141438 PMCID: PMC4840268 DOI: 10.1016/j.ijppaw.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022]
Abstract
Tissue-cyst forming coccidia in the family Sarcocystidae are etiologic agents of protozoal encephalitis in marine mammals including the federally listed Southern sea otter (Enhydra lutris). California sea lions (Zalophus californianus), whose coastal habitat overlaps with sea otters, are definitive hosts for coccidian protozoa provisionally named Coccidia A, B and C. While Coccidia A and B have unknown clinical effects on aquatic wildlife hosts, Coccidia C is associated with severe protozoal disease in harbor seals (Phoca vitulina). In this study, we conducted surveillance for protozoal infection and fecal shedding in hospitalized and free-ranging California sea lions on the Pacific Coast and examined oocyst morphology and phenotypic characteristics of isolates via mouse bioassay and cell culture. Coccidia A and B were shed in similar frequency, particularly by yearlings. Oocysts shed by one free-ranging sea lion sampled at Año Nuevo State Park in California were previously unidentified in sea lions and were most similar to coccidia infecting Guadalupe fur seals (Arctocephalus townsendi) diagnosed with protozoal disease in Oregon (USA). Sporulated Coccidia A and B oocysts did not replicate in three strains of mice or in African green monkey kidney cells. However, cultivation experiments revealed that the inoculum of fecally-derived Coccidia A and B oocysts additionally contained organisms with genetic and antigenic similarity to Sarcocystis neurona; despite the absence of detectable free sporocysts in fecal samples by microscopic examination. In addition to the further characterization of Coccidia A and B in free-ranging and hospitalized sea lions, these results provide evidence of a new role for sea lions as putative mechanical vectors of S. neurona, or S. neurona-like species. Future work is needed to clarify the distribution, taxonomical status, and pathogenesis of these parasites in sea lions and other marine mammals that share their the near-shore marine environment. Diverse coccidian protozoa shed by California sea lions (CSL) were characterized. Oocyst shedding patterns, taxonomy, morphology and pathogenicity were examined. Mice and cell cultures were not susceptible to Coccidia A or B of CSL origin. Sarcocystis neurona-like zoites grew in cells inoculated with CSL fecal samples. California sea lions may serve as mechanical vectors of an S. neurona-like organism.
Collapse
Affiliation(s)
- Yvette A Girard
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Christine K Johnson
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Heather M Fritz
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Veterinary Pathology and Microbiology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Karen Shapiro
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Andrea E Packham
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ann C Melli
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | | | - Patricia A Conrad
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Dubey JP, Howe DK, Furr M, Saville WJ, Marsh AE, Reed SM, Grigg ME. An update on Sarcocystis neurona infections in animals and equine protozoal myeloencephalitis (EPM). Vet Parasitol 2015; 209:1-42. [PMID: 25737052 DOI: 10.1016/j.vetpar.2015.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/27/2023]
Abstract
Equine protozoal myeloencephalitis (EPM) is a serious disease of horses, and its management continues to be a challenge for veterinarians. The protozoan Sarcocystis neurona is most commonly associated with EPM. S. neurona has emerged as a common cause of mortality in marine mammals, especially sea otters (Enhydra lutris). EPM-like illness has also been recorded in several other mammals, including domestic dogs and cats. This paper updates S. neurona and EPM information from the last 15 years on the advances regarding life cycle, molecular biology, epidemiology, clinical signs, diagnosis, treatment and control.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD 20705-2350, USA.
| | - D K Howe
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - M Furr
- Marion du Pont Scott Equine Medical Center, Virginia Maryland Regional College of Veterinary Medicine, 17690 Old Waterford Road, Leesburg, VA 20176, USA
| | - W J Saville
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - A E Marsh
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - S M Reed
- Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - M E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Health, National Institutes of Allergy, and Infectious Diseases, 4 Center Drive, Room B1-06, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Carlson-Bremer DP, Gulland FMD, Johnson CK, Colegrove KM, Van Bonn WG. Diagnosis and treatment ofSarcocystis neurona–induced myositis in a free-ranging California sea lion. J Am Vet Med Assoc 2012; 240:324-8. [DOI: 10.2460/javma.240.3.324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Sarcocystis tupaia, sp. nov., a new parasite species employing treeshrews (Tupaiidae, Tupaia belangeri chinensis) as natural intermediate hosts. Parasitol Int 2010; 59:128-32. [DOI: 10.1016/j.parint.2009.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/10/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
|
12
|
Wendte JM, Miller MA, Nandra AK, Peat SM, Crosbie PR, Conrad PA, Grigg ME. Limited genetic diversity among Sarcocystis neurona strains infecting southern sea otters precludes distinction between marine and terrestrial isolates. Vet Parasitol 2009; 169:37-44. [PMID: 20071081 DOI: 10.1016/j.vetpar.2009.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Sarcocystis neurona is an apicomplexan parasite identified as a cause of fatal neurological disease in the threatened southern sea otter (Enhydra lutris nereis). In an effort to characterize virulent S. neurona strains circulating in the marine ecosystem, this study developed a range of markers relevant for molecular genotyping. Highly conserved sequences within the 18S ribosomal gene array, the plastid-encoded RNA polymerase (RPOb) and the cytochrome c oxidase subunit 1 mitochondrial gene (CO1) were assessed for their ability to distinguish isolates at the genus and species level. For within-species comparisons, five surface antigens (SnSAG1-SnSAG5) and one high resolution microsatellite marker (Sn9) were developed as genotyping markers to evaluate intra-strain diversity. Molecular analysis at multiple loci revealed insufficient genetic diversity to distinguish terrestrial isolates from strains infecting marine mammals. Furthermore, SnSAG specific primers applied against DNA from the closely related species, Sarcocystis falcatula, lead to the discovery of highly similar orthologs to SnSAG2, 3, and 4, calling into question the specificity of diagnostic tests based on these antigens. The results of this study suggest a population genetic structure for S. neurona similar to that reported for the related parasite, Toxoplasma gondii, dominated by a limited number of successful genotypes.
Collapse
Affiliation(s)
- J M Wendte
- Molecular Parasitology Unit, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | | | | | |
Collapse
|