1
|
Alrubaye AAK, Ekesi NS, Hasan A, Elkins E, Ojha S, Zaki S, Dridi S, Wideman RF, Rebollo MA, Rhoads DD. Chondronecrosis with osteomyelitis in broilers: further defining lameness-inducing models with wire or litter flooring to evaluate protection with organic trace minerals. Poult Sci 2020; 99:5422-5429. [PMID: 33142459 PMCID: PMC7647863 DOI: 10.1016/j.psj.2020.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The feed additive Availa-ZMC was investigated for the ability to reduce lameness in broilers using 2 alternative models for inducing lameness. The mixture of organic trace minerals was effective in reducing lameness by 20% in the wire flooring model and 25% in the litter flooring model with the bacterial challenge. Lameness in both models is overwhelmingly attributable to bacterial chondronecrosis with osteomyelitis. The reduction in lameness was associated, at least in part, with enhanced intestinal barrier integrity mediated by elevated expression of tight junction proteins and stimulation of bactericidal killing of adherent peripheral blood monocytes obtained from the birds treated with Availa-ZMC. Lameness is a major animal welfare concern in broiler production. The wire flooring model and litter flooring model with the bacterial challenge are effective models for evaluation of management strategies for mitigating infectious causes of lameness.
Collapse
Affiliation(s)
- Adnan A K Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | - Nnamdi S Ekesi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Amer Hasan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA; Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Ethan Elkins
- Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sohita Ojha
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sura Zaki
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sami Dridi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | - Robert F Wideman
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | | | - Douglas D Rhoads
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA.
| |
Collapse
|
2
|
Irizarry KJL, Downs E, Bryden R, Clark J, Griggs L, Kopulos R, Boettger CM, Carr TJ, Keeler CL, Collisson E, Drechsler Y. RNA sequencing demonstrates large-scale temporal dysregulation of gene expression in stimulated macrophages derived from MHC-defined chicken haplotypes. PLoS One 2017; 12:e0179391. [PMID: 28846708 PMCID: PMC5573159 DOI: 10.1371/journal.pone.0179391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/29/2017] [Indexed: 11/18/2022] Open
Abstract
Discovering genetic biomarkers associated with disease resistance and enhanced immunity is critical to developing advanced strategies for controlling viral and bacterial infections in different species. Macrophages, important cells of innate immunity, are directly involved in cellular interactions with pathogens, the release of cytokines activating other immune cells and antigen presentation to cells of the adaptive immune response. IFNγ is a potent activator of macrophages and increased production has been associated with disease resistance in several species. This study characterizes the molecular basis for dramatically different nitric oxide production and immune function between the B2 and the B19 haplotype chicken macrophages.A large-scale RNA sequencing approach was employed to sequence the RNA of purified macrophages from each haplotype group (B2 vs. B19) during differentiation and after stimulation. Our results demonstrate that a large number of genes exhibit divergent expression between B2 and B19 haplotype cells both prior and after stimulation. These differences in gene expression appear to be regulated by complex epigenetic mechanisms that need further investigation.
Collapse
Affiliation(s)
- Kristopher J. L. Irizarry
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
- The Applied Genomics Center, Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (KI); (YD)
| | - Eileen Downs
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Randall Bryden
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Jory Clark
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Lisa Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Renee Kopulos
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Cynthia M. Boettger
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Thomas J. Carr
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Calvin L. Keeler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Ellen Collisson
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (KI); (YD)
| |
Collapse
|
3
|
Dawes ME, Griggs LM, Collisson EW, Briles WE, Drechsler Y. Dramatic differences in the response of macrophages from B2 and B19 MHC-defined haplotypes to interferon gamma and polyinosinic:polycytidylic acid stimulation. Poult Sci 2014; 93:830-8. [PMID: 24706959 PMCID: PMC7107093 DOI: 10.3382/ps.2013-03511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The chicken MHC has been associated with disease resistance, though the mechanisms are not understood. The functions of macrophages, critical to both innate and acquired immunity, were compared between the more infectious bronchitis virus-resistant B2 and the more infectious bronchitis virus-susceptible B19 lines. In vivo peripheral blood concentrations of monocytes were similar in B2 or B19 homozygous haplotypes. Peripheral blood-derived macrophages were stimulated with poly I:C, simulating an RNA virus, or IFNγ, a cytokine at the interface of innate and adaptive immunity. Not only did B2-derived peripheral monocytes differentiate into macrophages more readily than the B19 monocytes, but as determined by NO production, macrophages from B2 and B2 on B19 genetic background chicks were also significantly more responsive to either stimulant. In conclusion, the correlation with resistance to illness following viral infection may be directly linked to a more vigorous innate immune response.
Collapse
Affiliation(s)
- Maisie E Dawes
- College of Veterinary Medicine, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766-1854
| | | | | | | | | |
Collapse
|