1
|
Edes AN, Zimmerman D, Jourdan B, Brown JL, Edwards KL. Value Ranges and Clinical Comparisons of Serum DHEA-S, IL-6, and TNF-α in Western Lowland Gorillas. Animals (Basel) 2022; 12:2705. [PMID: 36230446 PMCID: PMC9559573 DOI: 10.3390/ani12192705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Physiological data can provide valuable information about the health and welfare of animals. Unfortunately, few validated assays and a lack of information on species-typical levels of circulating biomarkers for wildlife make the measurement, interpretation, and practical application of such data difficult. We validated commercially available kits and calculated reference intervals (herein called "value ranges") for dehydroepiandrosterone-sulfate (DHEA-S), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in a sample of zoo-housed western lowland gorillas due to the roles these biomarkers play in stress and immune responses. For each biomarker, we present species-specific value ranges for a sample of gorillas in human care (n = 57). DHEA-S did not vary significantly by sex or age, while IL-6 was higher in males and older gorillas and TNF-α was higher in females but not associated with age. We also compared non-clinical with clinical samples (n = 21) to explore whether these biomarkers reflect changes in health status. There was no significant difference between clinical and non-clinical samples for DHEA-S, but both IL-6 and TNF-α were significantly higher in gorillas showing clinical symptoms or prior to death. Additional work is needed to improve our understanding of normal versus clinical variation in these biomarkers, and we encourage continued efforts to identify and validate additional biomarkers that can be used to inform assessments of health and welfare in wildlife.
Collapse
Affiliation(s)
- Ashley N. Edes
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, St. Louis, MO 63110, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Dawn Zimmerman
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT 59715, USA
- Smithsonian Global Health Program, National Zoological Park, Smithsonian Institution, Washington, DC 20008, USA
| | - Balbine Jourdan
- Veterinary Teaching Hospital, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Janine L. Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Katie L. Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
- North of England Zoological Society, Chester Zoo, Caughall Road, Upton-by-Chester CH2 1LH, UK
| |
Collapse
|
2
|
An Investigation of Ovarian and Adrenal Hormone Activity in Post-Ovulatory Cheetahs ( Acinonyx jubatus). Animals (Basel) 2022; 12:ani12070809. [PMID: 35405799 PMCID: PMC8996957 DOI: 10.3390/ani12070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cheetahs have been the subject of reproductive study for over 35 years, yet steroid hormone activity remains poorly described after ovulation. Our objective was to examine and compare fecal progestagen (fPM), estrogen (fEM), and glucocorticoid (fGM) metabolite concentrations post-ovulation in pregnant and non-pregnant animals to better understand female physiology (1) during successful pregnancy, (2) surrounding frequent non-pregnant luteal phases, and (3) after artificial insemination (AI) to improve the low success rate. Secondarily, the authors also validated a urinary progestagen metabolite assay, allowing pregnancy detection with minimal sample collection. Fecal samples were collected from 12 females for ≥2 weeks prior to breeding/hormone injection (the PRE period) through 92 days post-breeding/injection. Samples were assessed for hormone concentrations using established enzyme immunoassays. Urine samples were collected for 13 weeks from 6 females after natural breeding or AI. There were no differences among groups in fGM, but in pregnant females, concentrations were higher (p < 0.01) in the last trimester than any other time. For pregnant females that gave birth to singletons, fGM was higher (p = 0.0205), but fEM tended to be lower (p = 0.0626) than those with multi-cub litters. Our results provide insight into the physiological events surrounding natural and artificially stimulated luteal activity in the cheetah.
Collapse
|
3
|
CYTOKINE-RELEASE ASSAY FOR THE DETECTION OF MYCOBACTERIUM BOVIS INFECTION IN CHEETAH ( ACINONYX JUBATUS). J Zoo Wildl Med 2022; 52:1113-1122. [PMID: 34998280 DOI: 10.1638/2021-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
The lack of species-specific assays for the diagnosis of infectious diseases, such as bovine tuberculosis, poses a threat to the management of wildlife populations, especially for vulnerable species such as cheetah (Acinonyx jubatus). The aim of this study was to identify and develop a cell-mediated immunological cytokine-release assay that could distinguish between Mycobacterium bovis-infected and uninfected cheetahs using commercially available feline cytokine ELISA and domestic cat (Felis catus) recombinant proteins. Antibodies against domestic cat cytokines, tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interferon gamma (IFN-γ), were screened for cross-reactivity with plasma cytokines from cheetah whole blood stimulated using QuantiFERON®-TB Gold Plus (QFT) tubes. Evidence of cytokine production in response to QFT mitogen stimulation was observed in all four ELISA assays. However only the Mabtech Cat IFN-γ ELISABasic kit could distinguish between M. bovis-infected (n = 1) and uninfected (n = 1) cheetahs and was therefore selected for further evaluation. A preliminary cheetah specific cutoff value (11 pg/ml) for detecting M. bovis infection using the Mabtech Cat IFN-γ release assay was calculated using a M. bovis uninfected cheetah cohort. Although this study only included one confirmed M. bovis culture-positive and one M. bovis culture-negative cheetah, the Mabtech Cat IFN-γ release assay demonstrated its potential for diagnostic application in this species.
Collapse
|
4
|
Serum Health Biomarkers in African and Asian Elephants: Value Ranges and Clinical Values Indicative of the Immune Response. Animals (Basel) 2020; 10:ani10101756. [PMID: 32992555 PMCID: PMC7601509 DOI: 10.3390/ani10101756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Biomarkers are biological molecules found in the blood or other fluids or tissues that can indicate normal or abnormal processes or disease. Developing tools to measure biomarkers that indicate immune function and establishing concentrations observed within a species is an important first step in their use for managing health and understanding disease processes. Here we report assays, observed value ranges, and concentrations during illness or injury for seven immune biomarkers measured in the serum of African and Asian elephants under human care. Concentrations were variable in both clinical and non-clinical samples, but all seven biomarkers were elevated in at least one case and most increased in response to routine vaccination in a single Asian elephant. These tools provide an exciting avenue for monitoring health status and helping diagnose and treat health problems in wildlife species, like elephants. Abstract Serum biomarkers indicative of inflammation and disease can provide useful information regarding host immune processes, responses to treatment and prognosis. The aims of this study were to assess the use of commercially available anti-equine reagents for the quantification of cytokines (tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukins (IL) 2, 6, and 10) in African (Loxodonta africana, n = 125) and Asian (Elephas maximus, n = 104) elephants, and alongside previously validated anti-human reagents for acute-phase proteins (serum amyloid A and haptoglobin), calculate species-specific biomarker value ranges. In addition, we used opportunistically collected samples to investigate the concentrations of each biomarker during identified clinical cases of illness or injury, as a first step to understanding what biomarkers may be useful to managing elephant health. Immune biomarkers were each elevated above the calculated species-specific value ranges in at least one clinical case, but due to variability in both clinical and non-clinical samples, only serum amyloid A was significantly higher in clinical compared to non-clinical paired samples, with tendencies for higher TNF-α and IL-10. We also detected increased secretion of serum amyloid A and all five cytokines following routine vaccination of a single Asian elephant, indicating that these biomarkers can be beneficial for studying normal immune processes as well as pathology. This study indicates that assays developed with commercial reagents can be used to quantify health biomarkers in wildlife species and identifies several that warrant further investigation to elucidate immune responses to various pathologies.
Collapse
|
5
|
Maly MA, Edwards KL, Farin CE, Koester DC, Crosier AE. Assessing puberty in ex situ male cheetahs (Acinonyx jubatus) via fecal hormone metabolites and body weights. Gen Comp Endocrinol 2018; 268:22-33. [PMID: 30026021 DOI: 10.1016/j.ygcen.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 01/28/2023]
Abstract
Cheetahs are one of the most heavily studied felid species, with numerous publications on health, disease, and reproductive physiology produced over the last 30 years. Despite this relatively long history of research, there is a paucity of crucial biological data, such as pubertal onset, which has direct and significant applications to improved management of ex situ cheetah populations. This study aimed to determine age of pubertal onset in ex situ male cheetahs using non-invasive fecal steroid hormone monitoring and body weights. Fecal samples from 12 male cheetahs from four institutions were collected 2-3 times weekly from 1 to 42 months of age. Fecal androgen and glucocorticoid metabolites were analyzed using enzyme immunoassays previously validated for use with cheetah feces. Animal body weights were recorded monthly. Fecal hormone and body weight data were analyzed using generalized linear mixed models. Androgen concentrations exhibited an increase to levels similar to those observed in adult males by 18-24 months of age, and males attained adult body weights by 21 months of age. Based on these weight data and the initial increase in androgens toward adult concentrations, males were considered pubertal from 18 to 24 months of age. Glucocorticoid concentrations and amplitude of concentration over baseline were also increased during this period. Knowledge about the physiological changes associated with puberty is useful for management and improving reproductive success of cheetah populations under human care, particularly for determining timing of litter separation from dam, littermate dispersal and when to introduce potential breeding pairs.
Collapse
Affiliation(s)
- Morgan A Maly
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States; Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, 123 Polk Hall, 120 Broughton Drive, Raleigh, NC 27695, United States
| | - Katie L Edwards
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States
| | - Charlotte E Farin
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, 123 Polk Hall, 120 Broughton Drive, Raleigh, NC 27695, United States
| | - Diana C Koester
- Department of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, OH 44109, United States
| | - Adrienne E Crosier
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States.
| |
Collapse
|
6
|
Levin M, Jasperse L, Gebhard E, Rousselet E, Walsh C. Lack of cross-reactivity of human and porcine reagents to quantify manatee (Trichechus manatus) cytokines. Vet Immunol Immunopathol 2018; 203:57-59. [PMID: 30243374 DOI: 10.1016/j.vetimm.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 11/28/2022]
Abstract
Veterinary medical examinations, including both physical examination and diagnostic tests, are important to monitor the health of both managed-care and wild marine mammals. However, limited species-specific reagents and assays are available that may contribute to a broader medical examination. This project evaluated if commercially available human and porcine antibodies and reagents would cross-react with manatee (Trichechus manatus) cytokines as the first step to validate a new diagnostic tool for manatees. Overall, as a result of limited cross-reactivity, human and porcine commercial reagents did not allow for the quantification of manatee cytokines. At this point, caution must be exercised when using human or porcine immunoassay reagents to quantify manatee cytokines if the reagents have not been fully validated. Future efforts will continue to explore and test the cross-reactivity of reagents to measure manatee cytokines as new species-specific and commercial reagents become available.
Collapse
Affiliation(s)
- Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT, 06269, United States.
| | - Lindsay Jasperse
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT, 06269, United States
| | - Erika Gebhard
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Unit 3089, Storrs, CT, 06269, United States
| | - Estelle Rousselet
- Aquatic Animal Health Program, Department of Large Animal Clinical Sciences, College of Veterinary Medicine University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, United States
| | - Catherine Walsh
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, United States
| |
Collapse
|