1
|
Snell-Rood EC, Kjaer SJ, Marek-Spartz M, Devitz AC, Jansa SA. Pronounced declines in heavy metal burdens of Minnesotan mammals over the last century. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52473-52484. [PMID: 39150665 PMCID: PMC11374866 DOI: 10.1007/s11356-024-34667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Humans have drastically altered the ecology of heavy metals, which can have negative effects on animal development and neural functioning. Many species have shown the ability to adapt to anthropogenic increases in metal pollution, but such evolutionary responses will depend on the extent of metal variation over space and time. For terrestrial vertebrates, it is unclear how metal exposure has changed over time: some studies suggest metal content peaked with the enactment of policies controlling lead emissions, while other studies suggest metal levels peaked at least a century earlier. We used 162 specimens of four mammal species (a mouse, shrew, bat, and squirrel) to ask how metal content of the fur and skin has changed over a 90-year time period, and impacts on individual performance (body size and cranial capacity). Using ICP-MS, we show that for lead, cadmium, copper, and chromium, there were significant declines in metal content in mammal tissue over the 90-year time period, with lead levels five times lower now than in the early 1900s. Importantly, metal content began to drop well before the pollution regulation of the 1970s. Effects of time greatly outweighed any effects of an individual living near a human population center. Surprisingly, there were no effects of body metal content on body size, and only manganese was negatively related to relative cranial capacity. Taken together, these results suggest that present day populations of mammals are experiencing levels of heavy metal exposure that are less stressful than they were 100 years ago. In addition, temporal decreases in metal loads likely partly reflect global patterns of pollution decline that affect atmospheric metal deposition rather than local point sources of exposure.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA.
| | - Savannah J Kjaer
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Mary Marek-Spartz
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Amy-Charlotte Devitz
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Sharon A Jansa
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| |
Collapse
|
2
|
Temporal Trends in Skull Morphology of the European Bison from the 1950s to the Present Day. DIVERSITY 2023. [DOI: 10.3390/d15030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The shape and size of the skull are determined by various factors. These factors act not only on single individuals in their ontogenesis, but can affect entire populations in the long term, thus determining developmental trends. The aim of this study was to determine whether the craniometric features of the European bison skull and their proportions are constant or change over time. In total, 1097 European bison skulls from the Mammal Research Institute of the Polish Academy of Sciences and Warsaw University of Life Sciences were examined. It has been shown that almost all examined skull dimensions tend to decrease. The opposite phenomenon was observed for the height of the skull in males. The results of the work prove that European bison adapt to changing environmental conditions related to climate warming, food availability, and population density.
Collapse
|
3
|
Balcarcel AM, Geiger M, Clauss M, Sánchez‐Villagra MR. The mammalian brain under domestication: Discovering patterns after a century of old and new analyses. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:460-483. [PMID: 34813150 PMCID: PMC9787656 DOI: 10.1002/jez.b.23105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/24/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Comparisons of wild and domestic populations have established brain reduction as one of the most consistent patterns correlated with domestication. Over a century of scholarly work has been devoted to this subject, and yet, new data continue to foster its debate. Current arguments, both for and against the validity of brain reduction occurring in domestic taxa, have repeatedly cited a small set of reviews on this subject. The original works, their sampling, methodological details, and nuances of results that would be key to establishing validity, particularly in light of new data, have not been investigated. To facilitate and encourage a more informed discussion, we present a comprehensive review of original brain reduction literature for four mammalian clades: Artiodactyla, Perissodactyla, Carnivora, and Glires. Among these are studies that generated the most cited brain reduction values in modern domestication literature. In doing so, we provide a fairer stage for the critique of traits associated with domestication. We conclude that while brain reduction magnitudes may contain error, empirical data collectively support the reduction in brain size and cranial capacity for domestic forms.
Collapse
Affiliation(s)
- A. M. Balcarcel
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - M. Geiger
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | - M. Clauss
- Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and WildlifeUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
4
|
Neaux D, Harbers H, Blanc B, Ortiz K, Locatelli Y, Herrel A, Debat V, Cucchi T. The effect of captivity on craniomandibular and calcaneal ontogenetic trajectories in wild boar. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:575-585. [PMID: 35286754 DOI: 10.1002/jez.b.23130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Deciphering the plastic (i.e., nonheritable) changes induced by human control over wild animals in the archeological record is challenging. Previous studies detected morphological markers associated with captivity in the cranium, mandible, and calcaneus of adult wild boar (Sus scrofa) but the developmental trajectories leading up to these changes during ontogeny remain unknown. To assess the impact of growth in a captive environment on morphological structures during postnatal ontogeny, we used an experimental approach focusing on the same three structures and taxon. We investigated the form and size differences of captive-reared and wild-caught wild boar during growth using three-dimensional landmark-based geometric morphometrics. Our results provide evidence of an influence of captivity on the morphology of craniomandibular structures, as wild specimens are smaller than captive individuals at similar ages. The food resources inherent to anthropogenic environments may explain some of the observed differences between captive-reared and wild specimens. The calcaneus presents a different contrasted pattern of plasticity as captive and wild individuals differ in terms of form but not in terms of size. The physically more constrained nature of the calcaneus and the direct influence of mobility reduction on this bone may explain these discrepancies. These results provide new methodological perspectives for bioarchaeological approaches as they imply that the plastic mark of captivity can be observed in juvenile specimens in the same way it has been previously described in adults.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie, UMR 7262, Université de Poitiers CNRS, Poitiers, France
| | - Hugo Harbers
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Barbara Blanc
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
| | - Katia Ortiz
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle CNRS UPMC EPHE, UA, Paris, France
| | - Yann Locatelli
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
- Physiologie de la Reproduction et des Comportements, UMR 7247, INRAE CNRS Université de Tours IFCE, Nouzilly, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7179, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle CNRS UPMC EPHE, UA, Paris, France
| | - Thomas Cucchi
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
| |
Collapse
|
5
|
The impact of environmental factors on the evolution of brain size in carnivorans. Commun Biol 2022; 5:998. [PMID: 36130990 PMCID: PMC9492690 DOI: 10.1038/s42003-022-03748-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
The reasons why some animals have developed larger brains has long been a subject of debate. Yet, it remains unclear which selective pressures may favour the encephalization and how it may act during evolution at different taxonomic scales. Here we studied the patterns and tempo of brain evolution within the order Carnivora and present large-scale comparative analysis of the effect of ecological, environmental, social, and physiological variables on relative brain size in a sample of 174 extant carnivoran species. We found a complex pattern of brain size change between carnivoran families with differences in both the rate and diversity of encephalization. Our findings suggest that during carnivorans’ evolution, a trade-off have occurred between the cognitive advantages of acquiring a relatively large brain allowing to adapt to specific environments, and the metabolic costs of the brain which may constitute a disadvantage when facing the need to colonize new environments. The brain size of carnivores has evolved to balance a trade-off between increased cognitive function and increased metabolic cost.
Collapse
|
6
|
Abstract
The reasons why some animals have developed larger brains has long been a subject of debate. Yet, it remains unclear which selective pressures may favour the encephalization and how it may act during evolution at different taxonomic scales. Here we studied the patterns and tempo of brain evolution within the order Carnivora and present large-scale comparative analysis of the effect of ecological, environmental, social, and physiological variables on relative brain size in a sample of 174 extant carnivoran species. We found a complex pattern of brain size change between carnivoran families with differences in both the rate and diversity of encephalization. Our findings suggest that during carnivorans' evolution, a trade-off have occurred between the cognitive advantages of acquiring a relatively large brain allowing to adapt to specific environments, and the metabolic costs of the brain which may constitute a disadvantage when facing the need to colonize new environments.
Collapse
|
7
|
Abstract
BACKGROUND The Australian dingo continues to cause debate amongst Aboriginal people, pastoralists, scientists and the government in Australia. A lingering controversy is whether the dingo has been tamed and has now reverted to its ancestral wild state or whether its ancestors were domesticated and it now resides on the continent as a feral dog. The goal of this article is to place the discussion onto a theoretical framework, highlight what is currently known about dingo origins and taxonomy and then make a series of experimentally testable organismal, cellular and biochemical predictions that we propose can focus future research. DISCUSSION We consider a canid that has been unconsciously selected as a tamed animal and the endpoint of methodical or what we now call artificial selection as a domesticated animal. We consider wild animals that were formerly tamed as untamed and those wild animals that were formerly domesticated as feralized. Untamed canids are predicted to be marked by a signature of unconscious selection whereas feral animals are hypothesized to be marked by signatures of both unconscious and artificial selection. First, we review the movement of dingo ancestors into Australia. We then discuss how differences between taming and domestication may influence the organismal traits of skull morphometrics, brain and size, seasonal breeding, and sociability. Finally, we consider cellular and molecular level traits including hypotheses concerning the phylogenetic position of dingoes, metabolic genes that appear to be under positive selection and the potential for micronutrient compensation by the gut microbiome. CONCLUSIONS Western Australian Government policy is currently being revised to allow the widespread killing of the Australian dingo. These policies are based on an incomplete understanding of the evolutionary history of the canid and assume the dingo is feralized. However, accumulated evidence does not definitively show that the dingo was ever domesticated and additional focused research is required. We suggest that incorporating ancient DNA data into the debate concerning dingo origins will be pivotal to understanding the evolutionary history of the canid. Further, we advocate that future morphological, behavioural and genetic studies should focus on including genetically pure Alpine and Desert dingoes and not dingo-dog hybrids. Finally, we propose that future studies critically examine genes under selection in the dingo and employ the genome from a wild canid for comparison.
Collapse
Affiliation(s)
- J. William O. Ballard
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052 Australia
| | - Laura A. B. Wilson
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
8
|
Bobrowicz K, Osvath M. Cats Parallel Great Apes and Corvids in Motor Self-Regulation - Not Brain but Material Size Matters. Front Psychol 2018; 9:1995. [PMID: 30405485 PMCID: PMC6204371 DOI: 10.3389/fpsyg.2018.01995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
The inhibition of unproductive motor movements is regarded as a fundamental cognitive mechanism. Recently it has been shown that species with large absolute brain size or high numbers of pallial neurons, like great apes and corvids, show the highest performance on a task purportedly measuring this mechanism: the cylinder task. In this task the subject must detour a perpendicularly oriented transparent cylinder to reach a reward through a side opening, instead of directly reaching for it and bumping into the front, which is regarded as an inhibitory failure. Here we test domestic cats, for the first time, and show that they can reach the same levels as great apes and corvids on this task, despite having much smaller brains. We tested subjects with apparatuses that varied in size (cylinder length and diameter) and material (glass or plastic), and found that subjects performed best on the large cylinders. As numbers of successes decreased significantly when the cylinders were smaller, we conducted additionally two experiments to discern which properties (length of the transparent surface, goal distance from the surface, size of the side opening) affects performance. We conclude that sensorimotor requirements, which differ between species, may have large impact on the results in such seemingly simple and apparently comparable tests. However, we also conclude that cats have comparably high levels of motor self-regulation, despite the differences between tests.
Collapse
Affiliation(s)
- Katarzyna Bobrowicz
- Cognitive Zoology Group, Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Veitschegger K. The effect of body size evolution and ecology on encephalization in cave bears and extant relatives. BMC Evol Biol 2017; 17:124. [PMID: 28583080 PMCID: PMC5460516 DOI: 10.1186/s12862-017-0976-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of larger brain volumes relative to body size in Mammalia is the subject of an extensive amount of research. Early on palaeontologists were interested in the brain of cave bears, Ursus spelaeus, and described its morphology and size. However, until now, it was not possible to compare the absolute or relative brain size in a phylogenetic context due to the lack of an established phylogeny, comparative material, and phylogenetic comparative methods. In recent years, many tools for comparing traits within phylogenies were developed and the phylogenetic position of cave bears was resolved based on nuclear as well as mtDNA. RESULTS Cave bears exhibit significantly lower encephalization compared to their contemporary relatives and intraspecific brain mass variation remained rather small. Encephalization was correlated with the combined dormancy-diet score. Body size evolution was a main driver in the degree of encephalization in cave bears as it increased in a much higher pace than brain size. In Ursus spelaeus, brain and body size increase over time albeit differently paced. This rate pattern is different in the highest encephalized bear species within the dataset, Ursus malayanus. The brain size in this species increased while body size heavily decreased compared to its ancestral stage. CONCLUSIONS Early on in the evolution of cave bears encephalization decreased making it one of the least encephalized bear species compared to extant and extinct members of Ursidae. The results give reason to suspect that as herbivorous animals, cave bears might have exhibited a physiological buffer strategy to survive the strong seasonality of their environment. Thus, brain size was probably affected by the negative trade-off with adipose tissue as well as diet. The decrease of relative brain size in the herbivorous Ursus spelaeus is the result of a considerable increase in body size possibly in combination with environmental conditions forcing them to rest during winters.
Collapse
Affiliation(s)
- Kristof Veitschegger
- Palaeontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006, Zürich, Switzerland.
| |
Collapse
|
10
|
Yu A, Munshi-South J, Sargis EJ. Morphological Differentiation in White-Footed Mouse (Mammalia: Rodentia: Cricetidae: Peromyscus leucopus) Populations from the New York City Metropolitan Area. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2017. [DOI: 10.3374/014.058.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jason Munshi-South
- Department of Biological Sciences, Fordham University, Bronx, NY USA, and Louis Calder Center-Biological Field Station, Fordham University, Armonk, NY USA
| | - Eric J. Sargis
- Department of Anthropology, Yale University, and Division of Vertebrate Zoology, Yale Peabody Museum of Natural History, New Haven, CT USA
| |
Collapse
|
11
|
Arsznov BM, Sakai ST. The procyonid social club: comparison of brain volumes in the coatimundi (Nasua nasua, N. narica), kinkajou (Potos flavus), and raccoon (Procyon lotor). BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:129-45. [PMID: 24107681 DOI: 10.1159/000354639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022]
Abstract
The present study investigated whether increased relative brain size, including regional brain volumes, is related to differing behavioral specializations exhibited by three member species of the family Procyonidae. Procyonid species exhibit continuums of behaviors related to social and physical environmental complexities: the mostly solitary, semiarboreal and highly dexterous raccoons (Procyon lotor); the exclusively arboreal kinkajous (Potos flavus), which live either alone or in small polyandrous family groups, and the social, terrestrial coatimundi (Nasua nasua, N. narica). Computed tomographic (CT) scans of 45 adult skulls including 17 coatimundis (9 male, 8 female), 14 raccoons (7 male, 7 female), and 14 kinkajous (7 male, 7 female) were used to create three-dimensional virtual endocasts. Endocranial volume was positively correlated with two separate measures of body size: skull basal length (r = 0.78, p < 0.01) and basicranial axis length (r = 0.45, p = 0.002). However, relative brain size (total endocranial volume as a function of body size) varied by species depending on which body size measurement (skull basal length or basicranial axis length) was used. Comparisons of relative regional brain volumes revealed that the anterior cerebrum volume consisting mainly of frontal cortex and surface area was significantly larger in the social coatimundi compared to kinkajous and raccoons. The dexterous raccoon had the largest relative posterior cerebrum volume, which includes the somatosensory cortex, in comparison to the other procyonid species studied. The exclusively arboreal kinkajou had the largest relative cerebellum and brain stem volume in comparison to the semi arboreal raccoon and the terrestrial coatimundi. Finally, intraspecific comparisons failed to reveal any sex differences, except in the social coatimundi. Female coatimundis possessed a larger relative frontal cortical volume than males. Social life histories differ in male and female coatimundis but not in either kinkajous or raccoons. This difference may reflect the differing social life histories experienced by females who reside in their natal bands, and forage and engage in antipredator behavior as a group, while males disperse upon reaching adulthood and are usually solitary thereafter. This analysis in the three procyonid species supports the comparative neurology principle that behavioral specializations correspond to an expansion of neural tissue involved in that function.
Collapse
Affiliation(s)
- Bradley M Arsznov
- Department of Psychology, Michigan State University, East Lansing, Mich., USA
| | | |
Collapse
|
12
|
Snell-Rood EC, Wick N. Anthropogenic environments exert variable selection on cranial capacity in mammals. Proc Biol Sci 2013; 280:20131384. [PMID: 23966638 DOI: 10.1098/rspb.2013.1384] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is thought that behaviourally flexible species will be able to cope with novel and rapidly changing environments associated with human activity. However, it is unclear whether such environments are selecting for increases in behavioural plasticity, and whether some species show more pronounced evolutionary changes in plasticity. To test whether anthropogenic environments are selecting for increased behavioural plasticity within species, we measured variation in relative cranial capacity over time and space in 10 species of mammals. We predicted that urban populations would show greater cranial capacity than rural populations and that cranial capacity would increase over time in urban populations. Based on relevant theory, we also predicted that species capable of rapid population growth would show more pronounced evolutionary responses. We found that urban populations of two small mammal species had significantly greater cranial capacity than rural populations. In addition, species with higher fecundity showed more pronounced differentiation between urban and rural populations. Contrary to expectations, we found no increases in cranial capacity over time in urban populations-indeed, two species tended to have a decrease in cranial capacity over time in urban populations. Furthermore, rural populations of all insectivorous species measured showed significant increases in relative cranial capacity over time. Our results provide partial support for the hypothesis that urban environments select for increased behavioural plasticity, although this selection may be most pronounced early during the urban colonization process. Furthermore, these data also suggest that behavioural plasticity may be simultaneously favoured in rural environments, which are also changing because of human activity.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, MN, USA.
| | | |
Collapse
|
13
|
Damasceno EM, Hingst-Zaher E, Astúa D. Bite force and encephalization in the Canidae (Mammalia: Carnivora). J Zool (1987) 2013. [DOI: 10.1111/jzo.12030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. M. Damasceno
- Department of Zoology; Universidade Federal de Pernambuco; Recife Brazil
- Faculty of Life Sciences; University of Manchester; Manchester UK
| | | | - D. Astúa
- Department of Zoology; Universidade Federal de Pernambuco; Recife Brazil
| |
Collapse
|
14
|
Logan CJ, Clutton-Brock TH. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav Processes 2013; 92:143-6. [DOI: 10.1016/j.beproc.2012.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/26/2022]
|
15
|
Swanson EM, Holekamp KE, Lundrigan BL, Arsznov BM, Sakai ST. Multiple determinants of whole and regional brain volume among terrestrial carnivorans. PLoS One 2012; 7:e38447. [PMID: 22719890 PMCID: PMC3374790 DOI: 10.1371/journal.pone.0038447] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.
Collapse
Affiliation(s)
- Eli M Swanson
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
16
|
Finarelli JA. Estimating endocranial volume from the outside of the skull in Artiodactyla. J Mammal 2011. [DOI: 10.1644/09-mamm-a-391.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Sholts SB, Wärmländer SK, Flores LM, Miller KW, Walker PL. Variation in the Measurement of Cranial Volume and Surface Area Using 3D Laser Scanning Technology. J Forensic Sci 2010; 55:871-6. [DOI: 10.1111/j.1556-4029.2010.01380.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Abstract
Increased encephalization, or larger brain volume relative to body mass, is a repeated theme in vertebrate evolution. Here we present an extensive sampling of relative brain sizes in fossil and extant taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, and their relatives). By using Akaike Information Criterion model selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific evolutionary transformations in encephalization allometries. These evolutionary transformations include multiple independent encephalization increases and decreases in addition to a remarkably static basal Carnivora allometry that characterizes much of the suborder Feliformia and some taxa in the suborder Caniformia across much of their evolutionary history, emphasizing that complex processes shaped the modern distribution of encephalization across Carnivora. This analysis also permits critical evaluation of the social brain hypothesis (SBH), which predicts a close association between sociality and increased encephalization. Previous analyses based on living species alone appeared to support the SBH with respect to Carnivora, but those results are entirely dependent on data from modern Canidae (dogs). Incorporation of fossil data further reveals that no association exists between sociality and encephalization across Carnivora and that support for sociality as a causal agent of encephalization increase disappears for this clade.
Collapse
|
19
|
Abstract
A weighted-average model, which reliably estimates endocranial volume from three external measurements of the neurocranium of extant taxa in the mammalian order Carnivora, was tested for its applicability to fossil taxa by comparing model-estimated endocranial volumes to known endocast volumes. The model accurately reproduces endocast volumes for a wide array of fossil taxa across the crown radiation of the Carnivora, three stem carnivoramorphan taxa, and Pleistocene fossils of two extant species. Applying this model to fossil taxa without known endocast volumes expanded the sample of fossil taxa with estimated brain volumes in the carnivoran suborder Caniformia from 11 to 60 taxa. This then allowed a comprehensive assessment of the evolution of relative brain size across this clade. An allometry of brain volume to body mass was calculated on phylogenetically independent contrasts for the set of extant taxa, and from this, log-transformed encephalization quotients (logEQs) were calculated for all taxa, extant, and fossil. A series of Mann-Whitney tests demonstrated that the distributions of logEQs for taxa early in caniform evolutionary history possessed significantly lower median logEQs than extant taxa. Median logEQ showed a pronounced shift around the Miocene-Pliocene transition. Support tests, based on likelihood ratios, demonstrated that the variances of these distributions also were significantly lower than among modern taxa, but logEQ variance increased gradually through the history of the clade, not abruptly. Reconstructions of ancestral logEQs using weighted squared-change parsimony demonstrate that increased encephalization is observed across all major caniform clades (with the possible exception of skunks) and that these increases were achieved in parallel, although an "ancestor-descendant differencing" method could not rule out drift as a hypothesis. Peculiarities in the estimated logEQs for the extinct caniform family Amphicyonidae were also investigated; these unusual patterns are likely due to a unique allometry in scaling brain to body size in this single clade.
Collapse
Affiliation(s)
- John A Finarelli
- Committee on Evolutionary Biology, The University of Chicago, 1025 E. 57th St., Chicago, Illinois 60637, USA.
| | | |
Collapse
|