3
|
Bleicher SS, Kotler BP, Shalev O, Dixon A, Embar K, Brown JS. Divergent behavior amid convergent evolution: A case of four desert rodents learning to respond to known and novel vipers. PLoS One 2018; 13:e0200672. [PMID: 30125293 PMCID: PMC6101362 DOI: 10.1371/journal.pone.0200672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/05/2022] Open
Abstract
Desert communities world-wide are used as natural laboratories for the study of convergent evolution, yet inferences drawn from such studies are necessarily indirect. Here, we brought desert organisms together (rodents and vipers) from two deserts (Mojave and Negev). Both predators and prey in the Mojave have adaptations that give them competitive advantage compared to their middle-eastern counterparts. Heteromyid rodents of the Mojave, kangaroo rats and pocket mice, have fur-lined cheek pouches that allow them to carry larger loads of seeds under predation risk compared to gerbilline rodents of the Negev Deserts. Sidewinder rattlesnakes have heat-sensing pits, allowing them to hunt better on moonless nights when their Negev sidewinding counterpart, the Saharan horned vipers, are visually impaired. In behavioral-assays, we used giving-up density (GUD) to gauge how each species of rodent perceived risk posed by known and novel snakes. We repeated this for the same set of rodents at first encounter and again two months later following intensive "natural" exposure to both snake species. Pre-exposure, all rodents identified their evolutionarily familiar snake as a greater risk than the novel one. However, post-exposure all identified the heat-sensing sidewinder rattlesnake as a greater risk. The heteromyids were more likely to avoid encounters with, and discern the behavioral difference among, snakes than their gerbilline counterparts.
Collapse
Affiliation(s)
- Sonny Shlomo Bleicher
- Tumamoc People and Habitat, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States of America
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Burt P. Kotler
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Omri Shalev
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Austin Dixon
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Keren Embar
- Mitrani Department for Desert Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-Boker, Israel
| | - Joel S. Brown
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Integrated Mathematical Oncology, Moffitt Cancer Research Center, Tampa, FL, United States of America
| |
Collapse
|
4
|
Breed WG, Leigh CM, Breed MF. Changes in abundance and reproductive activity of small arid-zone murid rodents on an active cattle station in central Australia. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr16152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Boom and bust population cycles are characteristic of many arid-zone rodents, but it is unknown to what extent these dynamics might be influenced by the presence of invasive rodents, such as the house mouse (Mus musculus) in Australia.
Aim
To determine whether the presence of M. musculus can have negative consequences on the population abundance and reproduction of two old Australian endemic rodents (the spinifex hopping mouse, Notomys alexis, and sandy inland mouse, Pseudomys hermannsburgensis).
Methods
The study took place on the sand dunes of a cattle station in central Australia. Population abundance was estimated as the number of individuals caught in small mammal traps, and female reproductive condition by external examination and, in a few cases, euthanasia and inspection of the reproductive tract.
Key results
Two synchronous periods of high abundance of N. alexis and M. musculus occurred several months after significant rainfall events, whereas the abundance of P. hermannsburgensis was consistently low. No reproduction took place in N. alexis or M. musculus when populations had reached high abundance. During low-rainfall periods, M. musculus was not detected on the sand dunes, and the two endemic species were sparsely distributed, with reproduction occasionally being evident.
Conclusions
During dry periods, M. musculus contracted back to refuges around the homestead and, after significant rainfall, it expanded onto the sand dunes and became abundant at the same time as did N. alexis. In contrast, and unlike in areas where M. musculus was generally rare, P. hermannsburgensis always remained at a low abundance. These patterns suggest that in areas of the natural environment close to human-modified sites, populations of at least one species of an old endemic rodent are supressed by the presence of M. musculus. Reproduction did not occur in the old endemics at times of high M. musculus abundance, but did take place in spring/early summer, even in some dry years.
Implications
The spread of M. musculus into the Australian arid zone may have had negative impacts on the population dynamics of P. hermannsburgensis. These findings suggest that the presence of human settlements has resulted in refuges for house mice, which periodically spread out into the natural environment during ‘boom’ times and adversely affect the natural population cycle of ecologically similar species such as P. hermannsburgensis.
Collapse
|
6
|
Sahley CT, Cervantes K, Pacheco V, Salas E, Paredes D, Alonso A. Diet of a sigmodontine rodent assemblage in a Peruvian montane forest. J Mammal 2015; 96:1071-1080. [PMID: 26937050 PMCID: PMC4668991 DOI: 10.1093/jmammal/gyv112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Knowledge of feeding habits of small rodents is necessary for understanding food webs, trophic structure, and plant-animal interactions in Neotropical forests. Despite several studies that have investigated community structure and feeding behavior of rodents, large gaps remain in our understanding of their guild occupancy. Our objective was to investigate the diets of 7 species of small (< 100g) sympatric sigmodontine rodents in a high (3,500 m) Andean montane rainforest in Peru. We qualitatively and quantitatively assessed diet items in fecal samples from livetrapped rodents from 2009 to 2012. Frequency data for 4 diet categories indicated that all 7 species of rodents contained 4 diet categories in fecal samples: arthropods (88%), remains of leaves and fibers from plants (61%), intact seeds (with or without fruit pulp; 50%), and mycorrhizal spores (45%). Omnivory was found to be a strategy used by all species, although contingency table analysis revealed significant differences among and within species in diet categories. Cluster analysis showed 2 main groupings: that of the Thomasomys spp. plus Calomys sorellus group which included high amounts of intact seeds and plant parts in their fecal samples, and those of the genera Akodon, Microryzomys, Oligoryzomys, which included a greater proportion of arthropods in their fecal samples, but still consumed substantial amounts of fruit and plant parts. Intact seed remains from at least 17 plant species (9 families) were found in fecal samples. We concluded that this assemblage of sigmodontine rodents is omnivorous but that they likely play an important role as frugivores and in seed dispersal in tropical montane forests in Peru. El conocimiento de los hábitos alimenticios de roedores pequeños es necesario para comprender cadenas alimenticias, estructura trófica, e interacciones planta-animal en los bosques neotropicales. A pesar de que numerosos estudios han investigado la estructura de comunidades y el comportamiento de forrajeo en roedores, aún existen grandes vacíos en nuestra comprensión de sus gremios tróficos. Nuestro objetivo fue investigar las dietas de siete especies de pequeños (< 100 g) roedores sigmodontinos simpátricos en un bosque montano andino a 3.500] m en Perú. Cualitativamente y cuantitativamente evaluamos la dieta en muestras fecales de roedores capturados entre el 2009 y el 2012. Datos de frecuencia para cuatro categorías de dieta indicaron que las siete especies de roedores consumieron cuatro categorías de dieta: artrópodos (88%), pedazos de hojas y fibras de plantas (61%), semillas intactas (con o sin pulpa de frutos; 50%), y esporas de micorrizas (45%). Omnivoría fue la estrategia utilizada por todas las especies, aunque el análisis con tablas de contingencia reveló diferencias significativas entre y dentro de especies en categorías de dieta. El análisis de agrupación presentó 2 grupos principales: el grupo Thomasomys spp. y Calomys sorellus, que incluye una gran proporción de semillas intactas, y partes de plantas en las muestras fecales y el grupo que incluye los géneros Akodon, Microryzomys y Oligoryzomys, el cual incluyó una proporción mayor de artrópodos en sus muestras fecales, pero con niveles altos de semillas intactas. Semillas intactas de al menos 17 especies de plantas (9 familias) fueron encontradas en las muestras fecales. Concluimos que este ensamble de roedores sigmodontinos es omnívoro y que probablemente las especies juegan un rol importante como frugívoros y en la dispersión de semillas en los bosques montanos tropicales en el Perú.
Collapse
Affiliation(s)
| | - Klauss Cervantes
- Andean and Marine Biodiversity Monitoring and Assessment Program, Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, 9099 Woodcrest Dr., Brecksville, OH 44141, USA (CTS)
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (KC, VP, ES)
- Instituto de Ciencias Biológicas “Antonio Raimondi”, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima 1, Lima, Perú (VP)
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (DP)
- Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, 1100 Jefferson Drive SW, MRC 705, Washington, DC 20013, USA (AA)
| | - Victor Pacheco
- Andean and Marine Biodiversity Monitoring and Assessment Program, Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, 9099 Woodcrest Dr., Brecksville, OH 44141, USA (CTS)
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (KC, VP, ES)
- Instituto de Ciencias Biológicas “Antonio Raimondi”, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima 1, Lima, Perú (VP)
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (DP)
- Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, 1100 Jefferson Drive SW, MRC 705, Washington, DC 20013, USA (AA)
| | - Edith Salas
- Andean and Marine Biodiversity Monitoring and Assessment Program, Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, 9099 Woodcrest Dr., Brecksville, OH 44141, USA (CTS)
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (KC, VP, ES)
- Instituto de Ciencias Biológicas “Antonio Raimondi”, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima 1, Lima, Perú (VP)
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (DP)
- Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, 1100 Jefferson Drive SW, MRC 705, Washington, DC 20013, USA (AA)
| | - Diego Paredes
- Andean and Marine Biodiversity Monitoring and Assessment Program, Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, 9099 Woodcrest Dr., Brecksville, OH 44141, USA (CTS)
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (KC, VP, ES)
- Instituto de Ciencias Biológicas “Antonio Raimondi”, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima 1, Lima, Perú (VP)
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (DP)
- Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, 1100 Jefferson Drive SW, MRC 705, Washington, DC 20013, USA (AA)
| | - Alfonso Alonso
- Andean and Marine Biodiversity Monitoring and Assessment Program, Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, 9099 Woodcrest Dr., Brecksville, OH 44141, USA (CTS)
- Departamento de Mastozoología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (KC, VP, ES)
- Instituto de Ciencias Biológicas “Antonio Raimondi”, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Lima 1, Lima, Perú (VP)
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Lima 14, Lima, Perú (DP)
- Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, 1100 Jefferson Drive SW, MRC 705, Washington, DC 20013, USA (AA)
| |
Collapse
|