1
|
Rodrigues J, Lefoulon E, Gavotte L, Perillat-Sanguinet M, Makepeace B, Martin C, D'Haese CA. Wolbachia springs eternal: symbiosis in Collembola is associated with host ecology. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230288. [PMID: 37266040 PMCID: PMC10230187 DOI: 10.1098/rsos.230288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Wolbachia are endosymbiotic alpha-proteobacteria infecting a wide range of arthropods and nematode hosts with diverse interactions, from reproductive parasites to obligate mutualists. Their taxonomy is defined by lineages called supergroups (labelled by letters of the alphabet), while their evolutionary history is complex, with multiple horizontal transfers and secondary losses. One of the least recently derived, supergroup E, infects springtails (Collembola), widely distributed hexapods, with sexual and/or parthenogenetic populations depending on species. To better characterize the diversity of Wolbachia infecting springtails, the presence of Wolbachia was screened in 58 species. Eleven (20%) species were found to be positive, with three Wolbachia genotypes identified for the first time in supergroup A. The novel genotypes infect springtails ecologically and biologically different from those infected by supergroup E. To root the Wolbachia phylogeny, rather than distant other Rickettsiales, supergroup L infecting plant-parasitic nematodes was used here. We hypothesize that the ancestor of Wolbachia was consumed by soil-dwelling nematodes, and was transferred horizontally via plants into aphids, which then infected edaphic arthropods (e.g. springtails and oribatid mites) before expanding into most clades of terrestrial arthropods and filarial nematodes.
Collapse
Affiliation(s)
- Jules Rodrigues
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Emilie Lefoulon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | - Benjamin Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Coralie Martin
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Cyrille A D'Haese
- UMR7179 MECADEV, Museum national d'Histoire naturelle, Paris, France
| |
Collapse
|
2
|
Price DC, Brennan JR, Wagner NE, Egizi AM. Comparative hologenomics of two Ixodes scapularis tick populations in New Jersey. PeerJ 2021; 9:e12313. [PMID: 34820166 PMCID: PMC8588856 DOI: 10.7717/peerj.12313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Tick-borne diseases, such as those transmitted by the blacklegged tick Ixodes scapularis, are a significant and growing public health problem in the US. There is mounting evidence that co-occurring non-pathogenic microbes can also impact tick-borne disease transmission. Shotgun metagenome sequencing enables sampling of the complete tick hologenome—the collective genomes of the tick and all of the microbial species contained therein, whether pathogenic, commensal or symbiotic. This approach simultaneously uncovers taxonomic composition and allows the detection of intraspecific genetic variation, making it a useful tool to compare spatial differences across tick populations. We evaluated this approach by comparing hologenome data from two tick samples (N = 6 ticks per location) collected at a relatively fine spatial scale, approximately 23 km apart, within a single US county. Several intriguing variants in the data between the two sites were detected, including polymorphisms in both in the tick’s own mitochondrial DNA and that of a rickettsial endosymbiont. The two samples were broadly similar in terms of the microbial species present, including multiple known tick-borne pathogens (Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum), filarial nematodes, and Wolbachia and Babesia species. We assembled the complete genome of the rickettsial endosymbiont (most likely Rickettsia buchneri) from both populations. Our results provide further evidence for the use of shotgun metagenome sequencing as a tool to compare tick hologenomes and differentiate tick populations across localized spatial scales.
Collapse
Affiliation(s)
- Dana C Price
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Julia R Brennan
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Nicole E Wagner
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Andrea M Egizi
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America.,Tick-Borne Disease Laboratory, Monmouth County Mosquito Control Division, Tinton Falls, NJ, United States of America
| |
Collapse
|
3
|
Williams KM, Fessler MK, Bloomfield RA, Sandke WD, Malekshahi CR, Keroack CD, Duignan PJ, Torquato SD, Williams SA. A novel quantitative real-time PCR diagnostic assay for fecal and nasal swab detection of an otariid lungworm, Parafilaroides decorus. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:85-92. [PMID: 32489853 PMCID: PMC7256429 DOI: 10.1016/j.ijppaw.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023]
Abstract
Parafilaroides decorus, also known as sea lion lungworm, is a metastrongyloid nematode that infects otariid hosts, such as the charismatic California sea lion, Zalophus californianus. P. decorus causes bronchointerstitial pneumonia, respiratory distress, reduced ability to swim, dive and hunt and as a result, increased mortality particularly in young animals. Respiratory disease is a leading cause of stranding and admission to rehabilitation centers on the Pacific coast. Low-coverage genomic sequencing of four P. decorus individuals analyzed through Galaxy's RepeatExplorer identified a novel repeat DNA family we employed to design a sensitive quantitative PCR (qPCR) assay for diagnosing infections from fecal or sputum samples. The assay detects as little as 10 fg of P. decorus DNA and a linear regression model developed using a standard curve can be used to estimate the concentration of P. decorus DNA in a sample, ± 0.015 ng. This knowledge can be leveraged to estimate the level of parasite burden, which can be used to design improved treatments for animals in rehabilitation. Improved treatment of infections will aid in more animals being successfully released back into the wild. Developed qPCR assay for P. decorus. Sensitive to 10 fg. Applicable for feces or sputum.
Collapse
Affiliation(s)
- Kalani M Williams
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA
| | - M K Fessler
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA
| | - R A Bloomfield
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA
| | - William D Sandke
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA
| | - Clara R Malekshahi
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA
| | - Caroline D Keroack
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA
| | | | - Samantha D Torquato
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA
| | - Steven A Williams
- Smith College, Department of Biological Sciences, Northampton, MA, 01063, USA.,University of Massachusetts, Molecular and Cellular Biology Program, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Keroack CD, Williams KM, Fessler M, DeAngelis KE, Tsekitsidou E, Tozloski JM, Williams SA. A novel quantitative real-time PCR diagnostic assay for seal heartworm ( Acanthocheilonema spirocauda) provides evidence for possible infection in the grey seal ( Halichoerus grypus). Int J Parasitol Parasites Wildl 2018; 7:147-154. [PMID: 29988808 PMCID: PMC6031957 DOI: 10.1016/j.ijppaw.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 11/15/2022]
Abstract
The distinct evolutionary pressures faced by Pinnipeds have likely resulted in strong coevolutionary ties to their parasites (Leidenberger et al., 2007). This study focuses on the phocid seal filarial heartworm species Acanthocheilonema spirocauda. A. spirocauda is known to infect a variety of phocid seals, but does not appear to be restricted to a single host species (Measures et al., 1997; Leidenberger et al., 2007; Lehnert et al., 2015). However, to date, seal heartworm has never been reported in grey seals (Halichoerus grypus) (Measures et al., 1997; Leidenberger et al., 2007; Lehnert et al., 2015). The proposed vector for seal heartworm is Echinophthirius horridus, the seal louse. Seal lice are known to parasitize a wide array of phocid seal species, including the grey seal. With the advent of climate change, disease burden is expected to increase across terrestrial and marine mammals (Harvell et al., 2002). Accordingly, increased prevalence of seal heartworm has recently been reported in harbor seals (Phoca vitulina) (Lehnert et al., 2015). Thus, the need for improved, rapid, and cost-effective diagnostics is urgent. Here we present the first A. spirocauda-specific rapid diagnostic test (a quantitative real-time PCR assay), based on a highly repetitive genomic DNA repeat identified using whole genome sequencing and subsequent bioinformatic analysis. The presence of an insect vector provides the opportunity to develop a multifunctional diagnostic tool that can be used not only to detect the parasite directly from blood or tissue specimens, but also as a molecular xenomonitoring (XM) tool that can be used to assess the epidemiological profile of the parasite by screening the arthropod vector. Using this assay, we provide evidence for the first reported case of seal heartworm in a grey seal.
Collapse
|
5
|
Dunning Hotopp JC, Slatko BE, Foster JM. Targeted Enrichment and Sequencing of Recent Endosymbiont-Host Lateral Gene Transfers. Sci Rep 2017; 7:857. [PMID: 28405008 PMCID: PMC5429809 DOI: 10.1038/s41598-017-00814-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/20/2017] [Indexed: 11/11/2022] Open
Abstract
Lateral gene transfer (LGT) from microbial symbionts to invertebrate animals is described at an increasing rate, particularly between Wolbachia endosymbionts and their diverse invertebrate hosts. We sought to assess the use of a capture system to cost-effectively sequence such LGT from the host genome. The sequencing depth of Illumina paired end data obtained with a Wolbachia capture system correlated well with that for an Illumina paired end data set used to detect LGT in Wolbachia-depleted B. malayi (p-value: <2e-16). Using a sequencing depth threshold of two or three standard deviations above the mean, 96.9% or 96.7% of positions, respectively, are predicted in the same manner between the two datasets, with 24.7% or 42.5% of the known 49.0 kbp of LGT sequence predicted correctly, respectively. Prior qPCR results for nuwts showed similar correlations for both datasets supporting our conclusion that oligonucleotide-based capture methods can be used to obtain sequences from Wolbachia-host LGT. However, at least 121 positions had a minority of the reads supporting the endosymbiont reference base call using the capture data, illustrating that sequence reads from endosymbiont-host LGTs can confound endosymbiont genome projects, erroneously altering the called consensus genome, a problem that is irrespective to the sequencing technology or platform.
Collapse
Affiliation(s)
- Julie C Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, United States.
| | - Barton E Slatko
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, United States
| | - Jeremy M Foster
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, United States
| |
Collapse
|