1
|
Liu G, Jiang H, Sun W, Zhang J, Chen D, Murchie AIH. The function of twister ribozyme variants in non-LTR retrotransposition in Schistosoma mansoni. Nucleic Acids Res 2021; 49:10573-10588. [PMID: 34551436 PMCID: PMC8501958 DOI: 10.1093/nar/gkab818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The twister ribozyme is widely distributed over numerous organisms and is especially abundant in Schistosoma mansoni, but has no confirmed biological function. Of the 17 non-LTR retrotransposons known in S. mansoni, none have thus far been associated with ribozymes. Here we report the identification of novel twister variant (T-variant) ribozymes and their function in S. mansoni non-LTR retrotransposition. We show that T-variant ribozymes are located at the 5′ end of Perere-3 non-LTR retrotransposons in the S. mansoni genome. T-variant ribozymes were demonstrated to be catalytically active in vitro. In reporter constructs, T-variants were shown to cleave in vivo, and cleavage of T-variants was sufficient for the translation of downstream reporter genes. Our analysis shows that the T-variants and Perere-3 are transcribed together. Target site duplications (TSDs); markers of target-primed reverse transcription (TPRT) and footmarks of retrotransposition, are located adjacent to the T-variant cleavage site and suggest that T-variant cleavage has taken place inS. mansoni. Sequence heterogeneity in the TSDs indicates that Perere-3 retrotransposition is not site-specific. The TSD sequences contribute to the 5′ end of the terminal ribozyme helix (P1 stem). Based on these results we conclude that T-variants have a functional role in Perere-3 retrotransposition.
Collapse
Affiliation(s)
- Getong Liu
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hengyi Jiang
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Solovyeva A, Levakin I, Zorin E, Adonin L, Khotimchenko Y, Podgornaya O. Transposons-Based Clonal Diversity in Trematode Involves Parts of CR1 (LINE) in Eu- and Heterochromatin. Genes (Basel) 2021; 12:1129. [PMID: 34440303 PMCID: PMC8392823 DOI: 10.3390/genes12081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/21/2023] Open
Abstract
Trematode parthenitae have long been believed to form clonal populations, but clonal diversity has been discovered in this asexual stage of the lifecycle. Clonal polymorphism in the model species Himasthla elongata has been previously described, but the source of this phenomenon remains unknown. In this work, we traced cercarial clonal diversity using a simplified amplified fragment length polymorphism (SAFLP) method and characterised the nature of fragments in diverse electrophoretic bands. The repetitive elements were identified in both the primary sequence of the H. elongata genome and in the transcriptome data. Long-interspersed nuclear elements (LINEs) and long terminal repeat retrotransposons (LTRs) were found to represent an overwhelming majority of the genome and the transposon transcripts. Most sequenced fragments from SAFLP pattern contained the reverse transcriptase (RT, ORF2) domains of LINEs, and only a few sequences belonged to ORFs of LTRs and ORF1 of LINEs. A fragment corresponding to a CR1-like (LINE) spacer region was discovered and named CR1-renegade (CR1-rng). In addition to RT-containing CR1 transcripts, we found short CR1-rng transcripts in the redia transcriptome and short contigs in the mobilome. Probes against CR1-RT and CR1-rng presented strikingly different pictures in FISH mapping, despite both being fragments of CR1. In silico data and Southern blotting indicated that CR1-rng is not tandemly organised. CR1 involvement in clonal diversity is discussed.
Collapse
Affiliation(s)
- Anna Solovyeva
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia;
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab 1, 199034 Saint Petersburg, Russia;
| | - Ivan Levakin
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab 1, 199034 Saint Petersburg, Russia;
| | - Evgeny Zorin
- All-Russia Research Institute for Agricultural Microbiology, Pushkin 8, 196608 Saint Petersburg, Russia;
| | - Leonid Adonin
- Moscow Institute of Physics and Technology, Institutskiy per 9, 141701 Dolgoprudny, Russia;
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, Sukhanova St 8, 690091 Vladivostok, Russia;
| | - Olga Podgornaya
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia;
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya Nab 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|