1
|
Li J, Xu F, Karim MR, Zhang L. Review on Cyclosporiasis Outbreaks and Potential Molecular Markers for Tracing Back Investigations. Foodborne Pathog Dis 2022; 19:796-805. [PMID: 36450125 DOI: 10.1089/fpd.2022.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cyclosporiasis is an emerging disease caused by Cyclospora cayetanensis, which induces protracting and relapsing gastroenteritis and has been linked to huge and complicated travel- and food-related outbreaks worldwide. Cyclosporiasis has become more common in both developing and developed countries as a result of increased global travel and the globalization of the human food supply. It is not just a burden on individual human health but also a worldwide public health problem. As a pathogen of interest, the molecular biological characteristics of C. cayetanensis have advanced significantly over the last few decades. However, only one FDA-approved molecular platform has been commercially used in the investigation of cyclosporiasis outbreaks. More potential molecular markers and genotyping of C. cayetanensis in samples based on the polymorphic region of the whole genomes might differentiate between separate case clusters and would be useful in tracing back investigations, especially during cyclosporiasis outbreak investigations. Considering that there is no effective vaccine for cyclosporosis, epidemiological investigation using effective tools is crucial for controlling cyclosporiasis by source tracking. Therefore, more and more epidemiological investigative studies for human cyclosporiasis should be promoted around the world to get a deeper understanding of its characteristics as well as management. This review focuses on major cyclosporiasis outbreaks and potential molecular markers for tracing back investigations into cyclosporiasis outbreaks.
Collapse
Affiliation(s)
- Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Feifei Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Md Robiul Karim
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| |
Collapse
|
2
|
Abstract
Cyclospora is an intracellular, gastrointestinal parasite found in birds and mammals worldwide. Limited accessibility of the protozoan for experimental use, scarcity, genome heterogeneity of the isolates and narrow panel of molecular markers hamper zoonotic investigations. One of the significant limitation in zoonotic studies is the lack of precise molecular tools that would be useful in linking animal vectors as a source of human infection. Strong and convincing evidence of zoonotic features will be achieved through proper typing of Cyclospora spp. taxonomic units (e.g. species or genotypes) in animal reservoirs. The most promising method that can be employ for zoonotic surveys is next-generation sequencing.
Collapse
|
3
|
Hadjilouka A, Tsaltas D. Cyclospora Cayetanensis-Major Outbreaks from Ready to Eat Fresh Fruits and Vegetables. Foods 2020; 9:E1703. [PMID: 33233660 PMCID: PMC7699734 DOI: 10.3390/foods9111703] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian protozoan that causes cyclosporiasis, a severe gastroenteric disease, especially for immunocompromised patients, children, and the elderly. The parasite is considered as an emerging organism and a major contributor of gastroenteritis worldwide. Although the global prevalence of cyclosporiasis morbidity and mortality has not been assessed, global concern has arisen since diarrheal illness and gastroenteritis significantly affect both developing countries and industrialized nations. In the last two decades, an increasing number of foodborne outbreaks has been associated with the consumption of fresh produce that is difficult to clean thoroughly and is consumed without processing. Investigations of these outbreaks have revealed the necessity to increase the awareness in clinicians of this infection, since this protozoan is often ignored by surveillance systems, and to establish control measures to reduce contamination of fresh produce. In this review, the major cyclosporiasis outbreaks linked to the consumption of ready to eat fresh fruits and vegetables are presented.
Collapse
Affiliation(s)
- Agni Hadjilouka
- EMBIO Diagnostics LTD., Athalassas 8b, 2018 Nicosia, Cyprus;
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archbishop Kyprianos 30, 3036 Limassol, Cyprus
| | - Dimitris Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archbishop Kyprianos 30, 3036 Limassol, Cyprus
| |
Collapse
|
4
|
Cyclospora cayetanensis infection in humans: biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology 2019; 147:160-170. [PMID: 31699163 DOI: 10.1017/s0031182019001471] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclospora cayetanensis, a coccidian parasite that causes protracted and relapsing gastroenteritis, has a short recorded history. At least 54 countries have documented C. cayetanensis infections and 13 of them have recorded cyclosporiasis outbreaks. Cyclospora cayetanensis infections are commonly reported in developing countries with low-socioeconomic levels or in endemic areas, although large outbreaks have also been documented in developed countries. The overall C. cayetanensis prevalence in humans worldwide is 3.55%. Among susceptible populations, the highest prevalence has been documented in immunocompetent individuals with diarrhea. Infections are markedly seasonal, occurring in the rainy season or summer. Cyclospora cayetanensis or Cyclospora-like organisms have also been detected in food, water, soil and some other animals. Detection methods based on oocyst morphology, staining and molecular testing have been developed. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) effectively cures C. cayetanensis infection, whereas ciprofloxacin is less effective than TMP-SMX, but is suitable for patients who cannot tolerate co-trimoxazole. Here, we review the biological characteristics, clinical features, epidemiology, detection methods and treatment of C. cayetanensis in humans, and assess some risk factors for infection with this pathogen.
Collapse
|
5
|
Almeria S, Cinar HN, Dubey JP. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019; 7:E317. [PMID: 31487898 PMCID: PMC6780905 DOI: 10.3390/microorganisms7090317] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal-oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. Trimetoprim-sulfamethoxazole is the antibiotic of choice for the treatment of cyclosporiasis, but relapses may occur. Further research is needed to understand many unknown epidemiological aspects of this parasitic disease. Here, we summarize the biology, epidemiology, outbreaks, clinical symptoms, diagnosis, treatment, control and prevention of C. cayetanensis; additionally, we outline future research needs for this parasite.
Collapse
Affiliation(s)
- Sonia Almeria
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Hediye N Cinar
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Jitender P Dubey
- Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
6
|
Human cyclosporiasis. THE LANCET. INFECTIOUS DISEASES 2019; 19:e226-e236. [PMID: 30885589 DOI: 10.1016/s1473-3099(18)30789-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023]
Abstract
Cyclospora species are socioeconomically important protistan pathogens. Cyclospora cayetanensis is usually transmitted via food or water to a human host via the faecal-oral route and can cause the gastrointestinal disease cyclosporiasis, which can be complicated by extra-intestinal disorders, particularly in immune-compromised people. Although more than 2 million children die each year from diarrhoeal diseases worldwide, it is not known to what extent cyclosporiasis is involved. Few epidemiological data are available on Cyclospora as a water-borne and food-borne pathogen in both underprivileged communities and developed countries. To gain an improved understanding of human cyclosporiasis, this Review describes the background of Cyclospora, summarises salient aspects of the pathogenesis, epidemiology, diagnosis, treatment, and control of cyclosporiasis, and explores what is known about its prevalence and geographical distribution. The findings show that the effect on human health of cyclosporiasis is likely underestimated, and recommendations are made about areas of future research and the prevention and control of this disease within an international collaborative context.
Collapse
|
7
|
Guo Y, Li N, Ortega YR, Zhang L, Roellig DM, Feng Y, Xiao L. Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions. Exp Parasitol 2017; 184:121-127. [PMID: 29274312 DOI: 10.1016/j.exppara.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Cyclospora cayetanensis is an emerging pathogen that is endemic in developing countries and responsible for many large foodborne cyclosporiasis outbreaks in North America since 1990s. Because of the lack of typing targets, the genetic diversity and population genetics of C. cayetanensis have not been investigated. In this study, we undertook a population genetic analysis of multilocus sequence typing data we recently collected from 64 C. cayetanensis specimens. Despite the extensive genetic heterogeneity in the overall C. cayetanensis population, there were significant intra- and inter-genic linkage disequilibria (LD). A disappearance of LD was observed when only multilocus genotypes were included in the population genetic analysis, indicative of an epidemic nature of C. cayetanensis. Geographical segregation-associated sub-structuring was observed between specimens from China and those from Peru and the United States. The two subpopulations had reduced LD, indicating the likely occurrence of genetic exchange among isolates in endemic areas. Further analyses of specimens from other geographical regions are necessary to fully understand the population genetics of C. cayetanensis.
Collapse
Affiliation(s)
- Yaqiong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Na Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ynes R Ortega
- Department of Food Science and Technology, University of Georgia, Griffin, GA, 30602, USA
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
8
|
Sulaiman IM, Jacobs E, Simpson S, Kerdahi K. Multilocus Genetic Characterization of Lactobacillus fermentum Isolated from Ready-to-Eat Canned Food. J Food Prot 2017; 80:963-968. [PMID: 28467184 DOI: 10.4315/0362-028x.jfp-16-546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The primary mission of the U.S. Food and Drug Administration is to enforce the Food, Drug, and Cosmetic Act and regulate food, drug, and cosmetic products. Thus, this agency monitors the presence of pathogenic microorganisms in these products, including canned foods, as one of the regulatory action criteria and also ensures that these products are safe for human consumption. This study was carried out to investigate the effectiveness of pathogen control and integrity of ready-to-eat canned food containing Black Bean Corn Poblano Salsa. A total of nine unopened and recalled canned glass jars from the same lot were examined initially by conventional microbiologic protocols that involved a two-step enrichment, followed by streaking on selective agar plates, for the presence of gram-positive and gram-negative bacteria. Of the eight subsamples examined for each sample, all subsamples of one of the containers were found positive for the presence of slow-growing rod-shaped, gram-positive, facultative anaerobic bacteria. The recovered isolates were subsequently sequenced at rRNA and gyrB loci. Afterward, multilocus sequence typing (MLST) was performed characterizing 11 additional known MLST loci (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Analyses of the nucleotide sequences of rRNA, gyrB, and 11 MLST loci confirmed these gram-positive bacteria recovered from canned food to be Lactobacillus fermentum . Thus, the DNA sequencing of housekeeping MLST genes can provide species identification of L. fermentum and can be used in the canned food monitoring program of public health importance.
Collapse
Affiliation(s)
- Irshad M Sulaiman
- Southeast Regional Laboratory, U.S. Food and Drug Administration, 60 Eighth Street N.E., Atlanta, Georgia 30309, USA
| | - Emily Jacobs
- Southeast Regional Laboratory, U.S. Food and Drug Administration, 60 Eighth Street N.E., Atlanta, Georgia 30309, USA
| | - Steven Simpson
- Southeast Regional Laboratory, U.S. Food and Drug Administration, 60 Eighth Street N.E., Atlanta, Georgia 30309, USA
| | - Khalil Kerdahi
- Southeast Regional Laboratory, U.S. Food and Drug Administration, 60 Eighth Street N.E., Atlanta, Georgia 30309, USA
| |
Collapse
|
9
|
Molecular Surveillance of Cronobacter spp. Isolated from a Wide Variety of Foods from 44 Different Countries by Sequence Typing of 16S rRNA, rpoB and O-Antigen Genes. Foods 2017; 6:foods6050036. [PMID: 28492472 PMCID: PMC5447912 DOI: 10.3390/foods6050036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Cronobacter spp. are emerging infectious bacteria that can cause acute meningitis and necrotizing enterocolitis in neonatal and immunocompromised individuals. Although this opportunistic human-pathogenic microorganism has been isolated from a wide variety of food and environmental samples, it has been primarily linked to foodborne outbreaks associated with powdered infant formula. The U.S. Food and Drug Administration use the presence of these microbes as one of the criteria to assess food adulteration and to implement regulatory actions. In this study, we have examined 195 aliquots of enrichments from the nine major categories of foods (including baby and medical food, dairy products, dried food, frozen food, pet food, produce, ready-to-eat snacks, seafood, and spices) from 44 countries using conventional microbiological and molecular techniques. The typical colonies of Cronobacter were then identified by VITEK2 and real-time PCR. Subsequently, sequence typing was performed on the 51 recovered Cronobacter isolates at the 16S rRNA, rpoB and seven O-antigen loci for species identification in order to accomplish an effective surveillance program for the control and prevention of foodborne illnesses.
Collapse
|
10
|
Genetic Characterization of Cronobacter sakazakii Recovered from the Environmental Surveillance Samples During a Sporadic Case Investigation of Foodborne Illness. Curr Microbiol 2016; 73:273-9. [PMID: 27155844 DOI: 10.1007/s00284-016-1059-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 12/28/2022]
Abstract
Cronobacter sakazakii is an opportunistic human-pathogenic bacterium known to cause acute meningitis and necrotizing enterocolitis in neonates and immunocompromised individuals. This human-pathogenic microorganism has been isolated from a variety of food and environmental samples, and has been also linked to foodborne outbreaks associated with powdered infant formula (PIF). The U.S. Food and Drug Administration have a policy of zero tolerance of these organisms in PIF. Thus, this agency utilizes the presence of these microorganisms as one of the criteria in implementing regulatory actions and assessing adulteration of food products of public health importance. In this study, we recovered two isolates of Cronobacter from the 91 environmental swab samples during an investigation of sporadic case of foodborne illness following conventional microbiological protocols. The isolated typical colonies were identified using VITEK2 and real-time PCR protocols. The recovered Cronobacter isolates were then characterized for species identification by sequencing the 16S rRNA locus. Further, multilocus sequence typing (MLST) was accomplished characterizing seven known C. sakazakii-specific MLST loci (atpD, fusA, glnS, gltB, gyrB, infB, and pps). Results of this study confirmed all of the recovered Cronobacter isolates from the environmental swab samples to be C. sakazakii. The MLST profile matched with the published profile of the complex 31 of C. sakazakii. Thus, rRNA and 7-loci MLST-based sequencing protocols are robust techniques for rapid detection and differentiation of Cronobacter species, and these molecular diagnostic tools can be used in implementing successful surveillance program and in the control and prevention of foodborne illness.
Collapse
|
11
|
Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clin Microbiol Rev 2016; 27:371-418. [PMID: 24696439 DOI: 10.1128/cmr.00122-13] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, nucleic acid-based methods have been developed for the diagnosis of intestinal parasitic infections. Advantages of nucleic acid-based methods are numerous; typically, these include increased sensitivity and specificity and simpler standardization of diagnostic procedures. DNA samples can also be stored and used for genetic characterization and molecular typing, providing a valuable tool for surveys and surveillance studies. A variety of technologies have been applied, and some specific and general pitfalls and limitations have been identified. This review provides an overview of the multitude of methods that have been reported for the detection of intestinal parasites and offers some guidance in applying these methods in the clinical laboratory and in epidemiological studies.
Collapse
|
12
|
Tang K, Guo Y, Zhang L, Rowe LA, Roellig DM, Frace MA, Li N, Liu S, Feng Y, Xiao L. Genetic similarities between Cyclospora cayetanensis and cecum-infecting avian Eimeria spp. in apicoplast and mitochondrial genomes. Parasit Vectors 2015; 8:358. [PMID: 26152563 PMCID: PMC4495940 DOI: 10.1186/s13071-015-0966-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023] Open
Abstract
Background Cyclospora cayetanensis is an important cause for diarrhea in children in developing countries and foodborne outbreaks of cyclosporiasis in industrialized nations. To improve understanding of the basic biology of Cyclospora spp. and development of molecular diagnostic tools and therapeutics, we sequenced the complete apicoplast and mitochondrial genomes of C. cayetanensis. Methods The genome of one Chinese C. cayetanensis isolate was sequenced using Roche 454 and Illumina technologies. The assembled genomes of the apicoplast and mitochondrion were retrieved, annotated, and compared with reference genomes for other apicomplexans to infer genome organizations and phylogenetic relationships. Sequence variations in the mitochondrial genome were identified by comparison of two C. cayetanensis nucleotide sequences from this study and a recent publication. Results The apicoplast and mitochondrial genomes of C. cayetanensis are 34,155 and 6,229 bp in size and code for 65 and 5 genes, respectively. Comparative genomic analysis showed high similarities between C. cayetanensis and Eimeria tenella in both genomes; they have 85.6 % and 90.4 % nucleotide sequence similarities, respectively, and complete synteny in gene organization. Phylogenetic analysis of the genomic sequences confirmed the genetic similarities between cecum-infecting avian Eimeria spp. and C. cayetanensis. Like in other coccidia, both genomes of C. cayetanensis are transcribed bi-directionally. The apicoplast genome is circular, codes for the complete machinery for protein biosynthesis, and contains two inverted repeats that differ slightly in LSU rRNA gene sequences. In contrast, the mitochondrial genome has a linear concatemer or circular mapping topology. Eight single-nucleotide and one 7-bp multiple-nucleotide variants were detected between the mitochondrial genomes of C. cayetanensis from this and recent studies. Conclusions The apicoplast and mitochondrial genomes of C. cayetanensis are highly similar to those of cecum-infecting avian Eimeria spp. in both genome organization and sequences. The availability of sequence data beyond rRNA and heat shock protein genes could facilitate studies of C. cayetanensis biology and development of genotyping tools for investigations of cyclosporiasis outbreaks.
Collapse
Affiliation(s)
- Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Yaqiong Guo
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Michael A Frace
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Na Li
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shiyou Liu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The present review focuses on recent epidemiological and diagnostic advances in cystoisosporiasis and cyclosporiasis. RECENT FINDINGS Continuous outbreaks of these parasites occur worldwide. Sporadic cases in the United States are travel acquired, but also domestically acquired. New molecular diagnostic methods allow for accurate early diagnosis in humans, and might potentially decrease the burden of disease by detecting these parasites in vehicles of transmission. SUMMARY Better understanding of the epidemiology of Cyclospora cayetanensis and to a less extent to Cystoisospora belli has been gained recently. However, several gaps still remain in knowledge on the transmission and on mechanisms of persistent infection in immunosuppressed patients and prevention. New molecular methods might help in filling these gaps and in controlling transmission.
Collapse
|
14
|
Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus. INFECTION GENETICS AND EVOLUTION 2014; 22:229-34. [DOI: 10.1016/j.meegid.2013.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/20/2013] [Accepted: 07/13/2013] [Indexed: 11/29/2022]
|