1
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
2
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
3
|
Parasite protein phosphatases: biological function, virulence, and host immune evasion. Parasitol Res 2021; 120:2703-2715. [PMID: 34309709 DOI: 10.1007/s00436-021-07259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Protein phosphatases are enzymes that dephosphorylate tyrosine and serine/threonine amino acid residues. Although their role in cellular processes has been best characterized in higher eukaryotes, they have also been identified and studied in different pathogenic microorganisms (e.g., parasites) in the last two decades. Whereas some parasite protein phosphatases carry out functions similar to those of their homologs in yeast and mammalian cells, others have unique structural and/or functional characteristics. Thus, the latter unique phosphatases may be instrumental as targets for drug therapy or as markers for diagnosis. It is important to better understand the involvement of protein phosphatases in parasites in relation to their cell cycle, metabolism, virulence, and evasion of the host immune response. The up-to-date information about parasite phosphatases of medical and veterinarian relevance is herein reviewed.
Collapse
|
4
|
Rothberg KG, Jetton N, Hubbard JG, Powell DA, Pandarinath V, Ruben L. Identification of a protein phosphatase 2A family member that regulates cell cycle progression in Trypanosoma brucei. Mol Biochem Parasitol 2014; 194:48-52. [PMID: 24780109 DOI: 10.1016/j.molbiopara.2014.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 04/12/2014] [Accepted: 04/18/2014] [Indexed: 11/30/2022]
Abstract
The cell cycle consists of an orderly sequence of events, whose purpose is to faithfully replicate and segregate cellular components. Many events in the cell cycle are triggered by protein kinases and counteracting phosphoprotein phosphatases (PPP). In Trypanosoma brucei, RNAi has been used to characterize numerous regulatory kinases, while the role of protein phosphatases has primarily been deduced with inhibitors such as okadaic acid and calyculin. In the present study, we identify for the first time a protein phosphatase 2A family member (TbPP2A-1) whose knockdown with RNAi phenocopies the effects of okadaic acid (OKA). In bloodstream forms (BF) and insect stage procyclic forms (PF) RNAi of TbPP2A-1 generates a cell population characterized by: an inhibition of cell growth, a block in cytokinesis; continued synthesis of nuclear DNA leading to aneuploidy; continued mitosis leading to cells with N>2, and an unusual phenotype where number of kinetoplasts (and flagella) is less than the number of nuclei. An engineered cell line was constructed to further study TbPP2A-1 and to facilitate the discovery of other cell cycle regulatory genes.
Collapse
Affiliation(s)
- Karen G Rothberg
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Neal Jetton
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - James G Hubbard
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Daniel A Powell
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Vidya Pandarinath
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States
| | - Larry Ruben
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, United States.
| |
Collapse
|
5
|
Forsythe GR, McCulloch R, Hammarton TC. Hydroxyurea-induced synchronisation of bloodstream stage Trypanosoma brucei. Mol Biochem Parasitol 2009; 164:131-6. [PMID: 19150633 PMCID: PMC6218013 DOI: 10.1016/j.molbiopara.2008.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/09/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
Synchronisation of the Trypanosoma brucei cell cycle proved elusive for many years. A recent report demonstrated that synchronisation of procyclic form cells was possible following treatment with hydroxyurea. Here, that work is extended to the disease-relevant, mammalian-infective bloodstream stage trypanosome. Treatment of bloodstream stage Lister 427 T. brucei cells growing in vitro with 10 microg ml(-1) hydroxyurea for 6h led to an enrichment of cells in S phase. Following removal of the drug, cells proceeded uniformly through one round of the cell cycle, providing a much needed tool to enrich for specific cell cycle stages, in a manner similar to hydroxyurea treatment of procyclic form T. brucei.
Collapse
Affiliation(s)
- Glynn R. Forsythe
- Division of Infection & Immunity and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Richard McCulloch
- Division of Infection & Immunity and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Tansy C. Hammarton
- Division of Infection & Immunity and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
6
|
Kutuzov MA, Andreeva AV. Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 2008; 161:81-90. [PMID: 18619495 DOI: 10.1016/j.molbiopara.2008.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is an important mechanism implicated in physiology of any organism, including parasitic protozoa. Enzymes that control protein phosphorylation (kinases and phosphatases) are considered promising targets for drug development. This review attempts to provide the first account of the current understanding of the structure, regulation and biological functions of protein Ser/Thr phosphatases in unicellular parasites. We have examined the complements of phosphatases ("phosphatomes") of the PPP and PPM families in several species of Apicomplexa (including malaria parasite Plasmodium), as well as Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis and a microsporidium Encephalitozoon cuniculi. Apicomplexans have homologues (in most cases represented by single isoforms) of all human PPP subfamilies. Some apicomplexan PPP phosphatases have no orthologues in their vertebrate hosts, including a previously unrecognised group of pseudo-phosphatases with putative Ca(2+)-binding domains, which we designate as EFPP. We also describe the presence of previously undetected Zn finger motifs in PPEF phosphatases from kinetoplastids, and a likely case of convergent evolution of tetratricopeptide repeat domain-containing phosphatases in G. lamblia. Among the parasites examined, E. cuniculi has the smallest Ser/Thr phosphatome (5 PPP and no PPM), while T. vaginalis shows the largest expansion of the PPP family (169 predicted phosphatases). Most protozoan PPM phosphatases cluster separately from human sequences. The structural peculiarities or absence of human orthologues of a number of protozoan protein Ser/Thr phosphatases makes them potentially suitable targets for chemotherapy and thus warrants their functional assessment.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology, University of Illinois at Chicago, 909 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | |
Collapse
|
7
|
Jones C, Anderson S, Singha UK, Chaudhuri M. Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei. Parasitol Res 2008; 102:835-44. [PMID: 18193284 DOI: 10.1007/s00436-007-0817-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/19/2007] [Indexed: 12/20/2022]
Abstract
Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis in human and domestic animals, adapt in various environments during their digenetic life cycle. In this study, we found that Hsp90 is crucial for the survival of this parasite. Inhibition of Hsp90 activity by geldanamycin (GA) reduced cell growth and increased the level of Hsp90. Both the bloodstream and procyclic forms of T. brucei showed a several-fold greater sensitivity than the mammalian cells to GA and also to 17-AAG, a less toxic derivative of GA, suggesting that Hsp90 could be a potential chemotherapeuric target for African trypanosomiasis. T. brucei Hsp90 interacts with the protein phosphatase 5 (PP5) in vivo. Under normal growth conditions, T. brucei PP5 (TbPP5) and Hsp90 are primarily localized in the cytosol. However, with increase in growth temperature and GA treatment, these proteins translocate to the nucleus. Overproduction of TbPP5 by genetic manipulation reduced the growth inhibitory effect of GA, while knockdown of TbPP5 reduced cell growth more in the presence of GA, as compared to parental control. Depletion of TbPP5, however, did not prevent the induction of Hsp90 protein level during GA treatment. Together, these results suggest that TbPP5 positively regulates the function of Hsp90 to maintain cellular homeostasis during proteotoxic stresses in T. brucei.
Collapse
Affiliation(s)
- Candace Jones
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|