1
|
Kaminaga K, Fukunaga H, Hirose E, Watanabe R, Suzuki K, Prise KM, Yokoya A. Time-lapse imaging of cells in spatially fractionated X-ray fields using a mini beam as an alternative to accelerator-based sub-millimeter beams. JOURNAL OF RADIATION RESEARCH 2025:rraf020. [PMID: 40349201 DOI: 10.1093/jrr/rraf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025]
Abstract
Due to the limited number of accelerator-based X-ray facilities worldwide that provide beams with an adjustable size, their application for radiobiological research purposes has been restricted. Thus, the development of alternative methods is of technical importance for investigating cell/tissue responses in spatially non-uniform radiation fields. In this study, we performed mini beam irradiation of cells using a lead (Pb) sub-milli-collimator as an alternative method to sub-millimeter beams. Also, we employed human cervical carcinoma HeLa cells and hTERT-immortalized fibroblast BJ-1 cells that express fluorescence ubiquitination-based cell-cycle indicators (FUCCI). Time-lapse imaging revealed differences in the behavior of HeLa and BJ-1 cells in spatially heterogeneous radiation fields; in the case of HeLa cells, G2/M phase-arrested cells in the cell population were clearly observed, distinguishing irradiated from non-irradiated cells at the sub-millimeter scale level. Our findings indicate that FUCCI can be useful as a biological dose indicator, depending on cell type, and Pb sub-milli-collimators show potential as a possible alternative to accelerator-based X-ray sub-millimeter beams for radiobiological research. The use of the collimators, unlike beamtime experiments in synchrotron facilities with the approval of the committee, is highly versatile and may be beneficial in preliminary studies in a normal laboratory environment.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-ku, Sapporo 060-0812, Japan
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| | - Eri Hirose
- Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development, Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1112, Japan
| | - Ritsuko Watanabe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kevin M Prise
- Patrick G Johnstone Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
2
|
Tubin S, Vozenin M, Prezado Y, Durante M, Prise K, Lara P, Greco C, Massaccesi M, Guha C, Wu X, Mohiuddin M, Vestergaard A, Bassler N, Gupta S, Stock M, Timmerman R. Novel unconventional radiotherapy techniques: Current status and future perspectives - Report from the 2nd international radiation oncology online seminar. Clin Transl Radiat Oncol 2023; 40:100605. [PMID: 36910025 PMCID: PMC9996385 DOI: 10.1016/j.ctro.2023.100605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
•Improvement of therapeutic ratio by novel unconventional radiotherapy approaches.•Immunomodulation using high-dose spatially fractionated radiotherapy.•Boosting radiation anti-tumor effects by adding an immune-mediated cell killing.
Collapse
Affiliation(s)
- S. Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - M.C. Vozenin
- Radiation Oncology Laboratory, Radiation Oncology Service, Oncology Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Y. Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
| | - M. Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt 64291, Germany
- Technsiche Universität Darmstadt, Institute for Condensed Matter Physics, Darmstadt, Germany
| | - K.M. Prise
- Patrick G Johnston Centre for Cancer Research Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - P.C. Lara
- Canarian Comprehensive Cancer Center, San Roque University Hospital & Fernando Pessoa Canarias University, C/Dolores de la Rocha 9, Las Palmas GC 35001, Spain
| | - C. Greco
- Department of Radiation Oncology Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - M. Massaccesi
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C. Guha
- Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States
| | - X. Wu
- Executive Medical Physics Associates, 19470 NE 22nd Road, Miami, FL 33179, United States
| | - M.M. Mohiuddin
- Northwestern Medicine Cancer Center Warrenville and Northwestern Medicine Proton Center, 4455 Weaver Pkwy, Warrenville, IL 60555, United States
| | - A. Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - N. Bassler
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - S. Gupta
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - M. Stock
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
- Karl Landsteiner University of Health Sciences, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - R. Timmerman
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Inwood Road Dallas, TX 2280, United States
| |
Collapse
|
3
|
Madas BG, Boei J, Fenske N, Hofmann W, Mezquita L. Effects of spatial variation in dose delivery: what can we learn from radon-related lung cancer studies? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:561-577. [PMID: 36208308 PMCID: PMC9630403 DOI: 10.1007/s00411-022-00998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
Exposure to radon progeny results in heterogeneous dose distributions in many different spatial scales. The aim of this review is to provide an overview on the state of the art in epidemiology, clinical observations, cell biology, dosimetry, and modelling related to radon exposure and its association with lung cancer, along with priorities for future research. Particular attention is paid on the effects of spatial variation in dose delivery within the organs, a factor not considered in radiation protection. It is concluded that a multidisciplinary approach is required to improve risk assessment and mechanistic understanding of carcinogenesis related to radon exposure. To achieve these goals, important steps would be to clarify whether radon can cause other diseases than lung cancer, and to investigate radon-related health risks in children or persons at young ages. Also, a better understanding of the combined effects of radon and smoking is needed, which can be achieved by integrating epidemiological, clinical, pathological, and molecular oncology data to obtain a radon-associated signature. While in vitro models derived from primary human bronchial epithelial cells can help to identify new and corroborate existing biomarkers, they also allow to study the effects of heterogeneous dose distributions including the effects of locally high doses. These novel approaches can provide valuable input and validation data for mathematical models for risk assessment. These models can be applied to quantitatively translate the knowledge obtained from radon exposure to other exposures resulting in heterogeneous dose distributions within an organ to support radiation protection in general.
Collapse
Affiliation(s)
- Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
| | - Jan Boei
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nora Fenske
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomic and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| |
Collapse
|
4
|
Baiocco G, Bartzsch S, Conte V, Friedrich T, Jakob B, Tartas A, Villagrasa C, Prise KM. A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:545-559. [PMID: 36220965 PMCID: PMC9630194 DOI: 10.1007/s00411-022-00989-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/03/2022] [Indexed: 05/10/2023]
Abstract
The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.
Collapse
Affiliation(s)
- Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| | - Stefan Bartzsch
- Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Valeria Conte
- Istituto Nazionale Di Fisica Nucleare INFN, Laboratori Nazionali Di Legnaro, Legnaro, Italy
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Adrianna Tartas
- Biomedical Physics Division, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Carmen Villagrasa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Fukunaga H, Yokoya A, Prise KM. A Brief Overview of Radiation-Induced Effects on Spermatogenesis and Oncofertility. Cancers (Basel) 2022; 14:cancers14030805. [PMID: 35159072 PMCID: PMC8834293 DOI: 10.3390/cancers14030805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Spermatogenesis is one of the most important processes for the propagation of life; however, the testes’ ability to form sperm via this differentiation process is highly radiosensitive and easily impacted by exposure to environmental, occupational, or therapeutic radiation. Furthermore, the possibility that radiation effects on the gonads can be passed on from generation to generation should not be overlooked. This review focuses on the radiation-induced effects on spermatogenesis and the transgenerational effects. We also explore the potential of novel radiobiological approaches to improve male fertility preservation during radiotherapy. Abstract The genotoxicity of radiation on germ cells may be passed on to the next generation, thus its elucidation is not only a scientific issue but also an ethical, legal, and social issue in modern society. In this article, we briefly overview the effects of radiation on spermatogenesis and its associated genotoxicity, including the latest findings in the field of radiobiology. The potential role of transgenerational effects is still poorly understood, and further research in this area is desirable. Furthermore, from the perspective of oncofertility, we discuss the historical background and clinical importance of preserving male fertility during radiation treatment and the potential of microbeam radiotherapy. We hope that this review will contribute to stimulating further discussions and investigations for therapies for pediatric and adolescent/young adult patients.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence:
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Ibaraki 319-1106, Japan;
- Graduate School of Science and Engineering, Ibaraki University, Ibaraki 310-8512, Japan
| | - Kevin M. Prise
- Patrick G Johnstone Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| |
Collapse
|
6
|
Fukunaga H. Stem Cell Migration: A Possible Mechanism for the Tissue-Sparing Effect of Spatially Fractionated Radiation. Radiat Res 2021; 196:680-685. [PMID: 34496025 DOI: 10.1667/rade-21-00134.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 11/03/2022]
Abstract
Stem cell responses in tissues after exposure to radiation are of significance for maintaining tissue functions. From the point of view of stem cell characteristics, this article seeks to illustrate some contributions of microbeam research to spatially fractionated radiotherapy (SFRT), such as grid radiotherapy and microbeam radiotherapy. Although the tissue-sparing response after SFRT was first reported more than a century ago, current radiation dose-volume metrics are still unable to accurately predict such tissue-level changes in response to spatially fractionated radiation fields. However, microbeam approaches could contribute to uncovering the mechanisms of tissue response, significantly improving the outcomes of SFRT and reducing its adverse effects. Studies with microbeams have shown that the testicular tissue-sparing effect for maintaining spermatogenesis after exposure to spatially fractionated radiation depends on biological parameters, such as the radiation dose distribution at the microscale level for tissue-specific stem cells and the microenvironment, or niche. This indicates that stem cell survival, migration, and repopulation are involved in the tissue-level changes during or after SFRT. The illustration of microbeam applications in this article focuses on the stem cell migration as a possible mechanism of the tissue-sparing effect for preserving functionality.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
7
|
A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy. Clin Oncol (R Coll Radiol) 2021; 33:705-712. [PMID: 34454806 DOI: 10.1016/j.clon.2021.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022]
Abstract
Microbeam radiotherapy (MRT) is the delivery of spatially fractionated beams that have the potential to offer significant improvements in the therapeutic ratio due to the delivery of micron-sized high dose and dose rate beams. They build on longstanding clinical experience of GRID radiotherapy and more recently lattice-based approaches. Here we briefly overview the preclinical evidence for MRT efficacy and highlight the challenges for bringing this to clinical utility. The biological mechanisms underpinning MRT efficacy are still unclear, but involve vascular, bystander, stem cell and potentially immune responses. There is probably significant overlap in the mechanisms underpinning MRT responses and FLASH radiotherapy that needs to be further defined.
Collapse
|