1
|
Ghoneum M, Badr El-Din NK, Alaa El-Dein M. Anti-radiation effect of MRN-100: a hydro-ferrate fluid, in vivo. JOURNAL OF RADIATION RESEARCH 2024; 65:145-158. [PMID: 38247158 PMCID: PMC10959437 DOI: 10.1093/jrr/rrad095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Indexed: 01/23/2024]
Abstract
Ionizing radiation (IR) severely harms many organs, especially the hematopoietic tissue, mandating the development of protective nutraceuticals. MRN-100, a hydro-ferrate fluid, has been shown to protect γ-radiated fish against hematopoietic tissue damage and lethality. The current study aimed to examine MRN-100's protective effect against irradiated mice and explore the mechanisms underlying its effect. Mice received a single acute, sub-lethal, 5 Gy, whole body dose of X-ray IR. MRN-100 treatment was administered daily for 2-weeks pre-irradiation until 1-week post-irradiation. Spleen and blood were analysed for oxidative stress, hematological, histological and biochemical parameters. Radiation exposure markedly decreased complete blood count (CBC) parameters including hemoglobin, hematocrit, red blood cells, platelets, white blood cells and lymphocytes, and significantly increased neutrophils. In contrast, MRN-100 supplementation to irradiated mice ameliorated all CBC parameters and protected against DNA damage in both splenic cells and serum. It also had an antioxidant effect, increasing the levels of glutathione, superoxide dismutase, catalase and total antioxidant capacity, which were otherwise decreased by irradiation. MRN-100 intake reduced the oxidative stress biomarker levels of nitric oxide, protein carbonyl, malondialdehyde, reactive oxygen species and 8-hydroxydeoxyguanosine, a marker specific to DNA damage. Furthermore, MRN-100 enhanced serum iron and reversed the radiation-induced elevations of liver enzymes. Finally, MRN-100 protected splenic tissue from irradiation as observed by histology. We conclude that MRN-100 consumption may protect against oxidative stress generated by radiation exposure, suggesting that it may be employed as an adjuvant treatment to prevent radiation's severe damage to important organs.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Department of Surgery, Charles Drew University of Medicine and Science, 1621 East 120th Street, Los Angeles, California 90059, USA
- Department of Surgery, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA
| | - Nariman K Badr El-Din
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mai Alaa El-Dein
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Beach T, Bakke J, McDonald JT, Riccio E, Javitz HS, Nishita D, Kapur S, Bunin DI, Chang PY. Delayed effects of radiation exposure in a C57L/J mouse model of partial body irradiation with ~2.5% bone marrow shielding. Front Public Health 2024; 12:1349552. [PMID: 38544733 PMCID: PMC10967016 DOI: 10.3389/fpubh.2024.1349552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 05/13/2024] Open
Abstract
Introduction Mouse models of radiation injury are critical to the development of medical countermeasures (MCMs) against radiation. Now that MCMs against hematopoietic acute radiation syndrome (H-ARS) have achieved regulatory approval, attention is shifting to develop MCMs against the adverse effects of gastrointestinal acute radiation syndrome (GI-ARS) and delayed effects of acute radiation exposure (DEARE). The C57L/J mouse model of partial body irradiation (PBI) with 2.5% bone marrow shielding (BM2.5) is being leveraged to examine both GI-ARS and DEARE effects. Within days of PBI, mice may develop H- and GI-ARS followed several months later by DEARE as a multi-organ injury, which typically involves the lung and kidney (L- and K-DEARE, respectively). The objective of this manuscript is to describe the dose response relationship and progression of radiation injury in the C57L/J mouse and to evaluate its suitability for use in DEARE MCM testing. Materials and methods In two separate studies conducted over 2 years, male and female C57L/J mice were exposed to PBI BM2.5 with one hindlimb shielded from radiation, representing ~2.5% bone marrow shielding/sparing. Mice were X-ray irradiated at doses ranging from 9 to 13 Gy at 10 to 12 weeks of age for the purposes of assessing ARS survival at 30 days and DEARE survival at 182 days post-irradiation. Clinical indicators of ARS and DEARE were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging (MRI) of lung, and histopathology of selected tissues. Results C57L/J mice developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in dose dependent mortality at doses ≥11 Gy between 1- and 15-days post-irradiation. In animals that survived ARS, DEARE associated mortality occurred in dose dependent fashion at ≥9 Gy for both sexes between 60- and 159-days post-irradiation with histopathology examinations indicating lung injury as the primary cause of death in moribund animals. Conclusion The PBI BM2.5 C57L/J mouse model reliably produced known H- and GI-ARS effects at doses greater than those resulting in DEARE effects. Because of this, the C57L/J mouse can be used to test MCMs against L-DEARE injury, while avoiding ARS associated mortality.
Collapse
|
3
|
Clark GC, Lai A, Agarwal A, Liu Z, Wang XY. Biopterin metabolism and nitric oxide recoupling in cancer. Front Oncol 2024; 13:1321326. [PMID: 38469569 PMCID: PMC10925643 DOI: 10.3389/fonc.2023.1321326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 03/13/2024] Open
Abstract
Tetrahydrobiopterin is a cofactor necessary for the activity of several enzymes, the most studied of which is nitric oxide synthase. The role of this cofactor-enzyme relationship in vascular biology is well established. Recently, tetrahydrobiopterin metabolism has received increasing attention in the field of cancer immunology and immunotherapy due to its involvement in the cytotoxic T cell response. Past research has demonstrated that when the availability of BH4 is low, as it is in chronic inflammatory conditions and tumors, electron transfer in the active site of nitric oxide synthase becomes uncoupled from the oxidation of arginine. This results in the production of radical species that are capable of a direct attack on tetrahydrobiopterin, further depleting its local availability. This feedforward loop may act like a molecular switch, reinforcing low tetrahydrobiopterin levels leading to altered NO signaling, restrained immune effector activity, and perpetual vascular inflammation within the tumor microenvironment. In this review, we discuss the evidence for this underappreciated mechanism in different aspects of tumor progression and therapeutic responses. Furthermore, we discuss the preclinical evidence supporting a clinical role for tetrahydrobiopterin supplementation to enhance immunotherapy and radiotherapy for solid tumors and the potential safety concerns.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alan Lai
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Zheng Liu
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Liu ST, Zha KJ, Li PJ, Gao JB, Zhang YG. Protective effect of naringin against radiation-induced heart disease in rats via Sirt1/NF-κB signaling pathway and endoplasmic reticulum stress. Chem Biol Drug Des 2024; 103:e14453. [PMID: 38230793 DOI: 10.1111/cbdd.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
This study was designed to explore the protective effect and mechanism of naringin (NG) on radiation-induced heart disease (RIHD) in rats. Rats were divided into four x-ray (XR) irradiation groups with different absorbed doses (0/10/15/20 Gy), or into three groups (control, XR, and XR + NG groups). Subsequently, the ultrasonic diagnostic apparatus was adopted to assess and compare the left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular internal diameter at end diastole (LVIDd), and left ventricular internal diameter at end systole (LVIDs) in rats. Hematoxylin-eosin (H&E) staining and Masson staining were applied to detect the pathological damage and fibrosis of heart tissue. Western blot was used to measure the expression levels of myocardial fibrosis-related proteins, endoplasmic reticulum stress-related proteins, and Sirt1 (silent information regulator 1)/NF-κB (nuclear factor kappa-B) signaling pathway-related proteins in cardiac tissues. Additionally, enzyme-linked immunosorbent assay was utilized to detect the activities of pro-inflammatory cytokines, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in cardiac tissue. The results showed that NG treatment significantly attenuated the 20 Gy XR-induced decline of LVEF and LVFS and the elevation of LVIDs. Cardiac tissue damage and fibrosis caused by 20 Gy XR were significant improved after NG treatment. Meanwhile, in rats irradiated by XR, marked downregulation was identified in the expressions of fibrosis-related proteins (Col I, collagen type I; α-SMA, α-smooth muscle actin; and TGF-β1, transforming growth factor-beta 1) and endoplasmic reticulum stress-related proteins (GRP78, glucose regulatory protein 78; CHOP, C/EBP homologous protein; ATF6, activating transcription factor 6; and caspase 12) after NG treatment. Moreover, NG treatment also inhibited the production of pro-inflammatory cytokines [interleukin-6, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1)], reduced the expression of MDA, and promoted the activities of SOD and CAT. Also, NG treatment promoted Sirt1 expression and inhibited p65 phosphorylation. Collectively, XR irradiation induced cardiac injury in rats in a dose-dependent manner. NG could improve the cardiac injury induced by XR irradiation by inhibiting endoplasmic reticulum stress and activating Sirt1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shu-Ting Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Ji Zha
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Jie Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Gao Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Sharma GP, Himburg HA. Organ-Specific Endothelial Dysfunction Following Total Body Irradiation Exposure. TOXICS 2022; 10:toxics10120747. [PMID: 36548580 PMCID: PMC9781710 DOI: 10.3390/toxics10120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
As the single cell lining of the heart and all blood vessels, the vascular endothelium serves a critical role in maintaining homeostasis via control of vascular tone, immune cell recruitment, and macromolecular transit. For victims of acute high-dose radiation exposure, damage to the vascular endothelium may exacerbate the pathogenesis of acute and delayed multi-organ radiation toxicities. While commonalities exist between radiation-induced endothelial dysfunction in radiosensitive organs, the vascular endothelium is known to be highly heterogeneous as it is required to serve tissue and organ specific roles. In keeping with its organ and tissue specific functionality, the molecular and cellular response of the endothelium to radiation injury varies by organ. Therefore, in the development of medical countermeasures for multi-organ injury, it is necessary to consider organ and tissue-specific endothelial responses to both injury and candidate mitigators. The purpose of this review is to summarize the pathogenesis of endothelial dysfunction following total or near total body irradiation exposure at the level of individual radiosensitive organs.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-(414)-955-4676
| |
Collapse
|
6
|
Walls GM, O'Kane R, Ghita M, Kuburas R, McGarry CK, Cole AJ, Jain S, Butterworth KT. Murine models of radiation cardiotoxicity: A systematic review and recommendations for future studies. Radiother Oncol 2022; 173:19-31. [PMID: 35533784 DOI: 10.1016/j.radonc.2022.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The effects of radiation on the heart are dependent on dose, fractionation, overall treatment time, and pre-existing cardiovascular pathology. Murine models have played a central role in improving our understanding of the radiation response of the heart yet a wide range of exposure parameters have been used. We evaluated the study design of published murine cardiac irradiation experiments to assess gaps in the literature and to suggest guidance for the harmonisation of future study reporting. METHODS AND MATERIALS A systematic review of mouse/rat studies published 1981-2021 that examined the effect of radiation on the heart was performed. The protocol was published on PROSPERO (CRD42021238921) and the findings were reported in accordance with the PRISMA guidance. Risk of bias was assessed using the SYRCLE checklist. RESULTS 159 relevant full-text original articles were reviewed. The heart only was the target volume in 67% of the studies and simulation details were unavailable for 44% studies. Dosimetry methods were reported in 31% studies. The pulmonary effects of whole and partial heart irradiation were reported in 13% studies. Seventy-eight unique dose-fractionation schedules were evaluated. Large heterogeneity was observed in the endpoints measured, and the reporting standards were highly variable. CONCLUSIONS Current murine models of radiation cardiotoxicity cover a wide range of irradiation configurations and latency periods. There is a lack of evidence describing clinically relevant dose-fractionations, circulating biomarkers and radioprotectants. Recommendations for the consistent reporting of methods and results of in vivo cardiac irradiation studies are made to increase their suitability for informing the design of clinical studies.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland.
| | - Reagan O'Kane
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Conor K McGarry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| |
Collapse
|
7
|
Guo J, Yang H, Liu Y, Liu W, Zhao R, Li H, Long W, Xu W, Guo M, Zhang X. Atomically precise silver clusterzymes protect mice from radiation damages. J Nanobiotechnology 2021; 19:377. [PMID: 34798888 PMCID: PMC8605545 DOI: 10.1186/s12951-021-01054-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As we know, radiotherapy plays an irreplaceable role in the clinical management on solid tumors. However, due to the non-specific killing effects of ionizing radiation, normal tissues damages would be almost simultaneous inevitably. Therefore, ideal radioprotective agents with high efficiency and low toxicity are always desirable. In this work, atomically precise Ag14 clusterzymes were developed, and their applications in radioprotection were studied in vitro and in vivo for the first time. METHODS The ultra-small glutathione supported Ag14 clusterzymes were synthesized by convenient sodium borohydride (NaBH4) reduction of thiolate-Ag (I) complexes and then they were purified by desalting columns. The enzyme-like activity and antioxidant capacity of Ag14 clusterzymes have been tested by various commercial kits, salicylic acid method and electron spin resonance (ESR). Next, they were incubated with L929 cells to evaluate whether they could increase cell viability after γ-ray irradiation. And then Ag14 clusterzymes were intravenously injected into C57 mice before 7 Gy whole-body γ-ray irradiation to evaluate the radioprotection effects in vivo. At last, the in vivo toxicities of Ag14 clusterzymes were evaluated through biodistribution test, hematological details, serum biochemical indexes and histological test in female Balb/c mice with intravenous injection of Ag14 clusterzymes. RESULTS Our studies suggested atomically precise Ag14 clusterzymes were potential radioprotectants. Ag14 clusterzymes exhibited unique superoxide dismutase (SOD)-like activity, strong anti-oxidative abilities, especially on •OH scavenging. The Ag14 clusterzymes could effectively improve cell viability through eliminating ROS and prevent DNA damages in cells dealt with γ-ray irradiation. In vivo experiments showed that Ag14 clusterzymes could improve the irradiated mice survival rate by protecting hematological systems and repairing tissue oxidative stress damage generated by γ-ray irradiation. In addition, bio-distribution and toxicological experiments demonstrated that the ultrasmall Ag14 clusterzymes could be excreted quickly from the body by renal clearance and negligible toxicological responses were observed in mice up to 30 days. CONCLUSION In summary, atomically precise, ultrasmall and water soluble Ag14 clusterzymes with SOD-like activity were successfully developed and proved to be effective both in vitro and in vivo for radioprotection. Furthermore, with atomically precise molecular structure, Ag14 clusterzymes, on aspect of the catalytic and optical properties, may be improved by structure optimization on atom-scale level for other applications in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jiao Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Haiyu Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ruiying Zhao
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, China
| | - He Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|