1
|
Meng Z, Liu Q, Liu Y, Yang Y, Shao C, Zhang S. Frizzled-3 suppression overcomes multidrug chemoresistance by Wnt/β-catenin signaling pathway inhibition in hepatocellular carcinoma cells. J Chemother 2023; 35:653-661. [PMID: 36843499 DOI: 10.1080/1120009x.2023.2182573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/28/2023]
Abstract
Multidrug resistance (MDR) is a major obstacle to the efficacy of hepatocellular carcinoma (HCC) chemotherapy. Previous studies have identified that low FZD3 predicted decreased survival after intraperitoneal versus intravenous-only chemotherapy in ovarian cancer. This study aimed to identify a potential target in HCC chemotherapy. The FZD3 expression variant in HCC cell lines was detected by RT-qPCR and western blotting. The FZD3 expression in the early recurrent HCC group (RE group) and the non-early recurrent HCC group (non-RE group) was measured by RT-qPCR. Then, the 50% inhibitory concentrations (IC50) in HCC cell lines were studied by MTT assay. TOP/FOP FLASH luciferase assay was performed to measure TCF-binding activities. We found that FZD3 was upregulated in three HCC cell lines, and the FZD3 expression was significantly higher in the RE group than in the non-RE group (P = 0.0344). A positive correlation between FZD3 and MDR1 was observed in HCC tissues (R2 = 0.6368, P = 0.0001). Then, we found that FZD3 knockdown significantly altered Huh-7 cell chemotherapeutic sensitivity to cisplatin [50.43 µM in the FZD3 siRNA (siFZD3) group vs 98.59 µM in the siRNA negative control (siNC) group; P = 0.007] or doxorubicin (7.43 µM in the siFZD3 group vs 14.93 µM in the siNC group; P = 0.017). TOP/FOP FLASH luciferase assay showed FZD3 could inhibit Wnt/β-catenin signaling in HCC cells. Moreover, FZD3 expression knockdown in SNU-449 and Huh-7 cells markedly reduced β-catenin and phosho-β-catenin (S37) protein expression, and Cyclin D1, c-myc and MDR1 were significantly decreased. This is the first study to describe the significantly increased FZD3 expression in patients with early recurrent HCC. FZD3 knockdown led to increased sensitivity to chemotherapy by Wnt/β-catenin signaling inhibition in HCC cell lines. Our study suggests FZD3 as a potential target for reversing chemoresistance in HCC.
Collapse
Affiliation(s)
- Zifan Meng
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanming Yang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changfeng Shao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
McQuerry JA, Chen J, Chang JT, Bild AH. Tepoxalin increases chemotherapy efficacy in drug-resistant breast cancer cells overexpressing the multidrug transporter gene ABCB1. Transl Oncol 2021; 14:101181. [PMID: 34298440 PMCID: PMC8322466 DOI: 10.1016/j.tranon.2021.101181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The COX-2 encoding gene PTGS2 is up-regulated upon ABCB1 overexpression in mammary epithelial cells. The 5-LOX, COX-1/2 inhibitor tepoxalin plus chemotherapy improves treatment efficacy in ABCB1-expressing cells. Tepoxalin reduces chemotherapy-induced selection for drug-resistant ABCB1-expressing cells.
Effective cancer chemotherapy treatment requires both therapy delivery and retention by malignant cells. Cancer cell overexpression of the multidrug transmembrane transporter gene ABCB1 (MDR1, multi-drug resistance protein 1) thwarts therapy retention, leading to a drug-resistant phenotype. We explored the phenotypic impact of ABCB1 overexpression in normal human mammary epithelial cells (HMECs) via acute adenoviral delivery and in breast cancer cell lines with stable integration of inducible ABCB1 expression. One hundred sixty-two genes were differentially expressed between ABCB1-expressing and GFP-expressing HMECs, including the gene encoding the cyclooxygenase-2 protein, PTGS2. Several breast cancer cell lines with inducible ABCB1 expression demonstrated sensitivity to the 5-lipoxygenase, cyclooxygenase-1/2 inhibitor tepoxalin in two-dimensional drug response assays, and combination treatment of tepoxalin either with chemotherapies or with histone deacetylase (HDAC) inhibitors improved therapeutic efficacy in these lines. Moreover, selection for the ABCB1-expressing cell population was reduced in three-dimensional co-cultures of ABCB1-expressing and GFP-expressing cells when chemotherapy was given in combination with tepoxalin. Further study is warranted to ascertain the clinical potential of tepoxalin, an FDA-approved therapeutic for use in domesticated mammals, to restore chemosensitivity and improve drug response in patients with ABCB1-overexpressing drug-resistant breast cancers.
Collapse
Affiliation(s)
- Jasmine A McQuerry
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA; Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA
| | - Jinfeng Chen
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA.
| |
Collapse
|
3
|
Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M, Chargari C. Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother 2019; 23:449-465. [PMID: 31400956 DOI: 10.1016/j.canrad.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, ionizing radiations have numerous applications, especially in medicine for diagnosis and therapy. Pharmacological radioprotection aims at increasing detoxification of free radicals. Radiomitigation aims at improving survival and proliferation of damaged cells. Both strategies are essential research area, as non-contained radiation can lead to harmful effects. Some advances allowing the comprehension of normal tissue injury mechanisms, and the discovery of related predictive biomarkers, have led to developing several highly promising radioprotector or radiomitigator drugs. Next to these drugs, a growing interest does exist for biotherapy in this field, including gene therapy and cell therapy through mesenchymal stem cells. In this review article, we provide an overview of the management of radiation damages to healthy tissues via gene or cell therapy in the context of radiotherapy. The early management aims at preventing the occurrence of these damages before exposure or just after exposure. The late management offers promises in the reversion of constituted late damages following irradiation.
Collapse
Affiliation(s)
- J Khalifa
- Départment de radiothérapie, institut Claudius-Regaud, institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - S François
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Rancoule
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - D Riccobono
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - N Magné
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - M Drouet
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Chargari
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France; Service de santé des armées, école du Val-de-Grâce, 74, boulevard de Port-Royal, 75005 Paris, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vailant, 94805 Villejuif, France
| |
Collapse
|
4
|
Abstract
Advances in molecular technologies have led to the discovery of many disease-related genetic mutations as well as elucidation of aberrant gene and protein expression patterns in several human diseases, including cancer. This information has driven the development of novel therapeutic strategies, such as the utilization of small molecules to target specific cellular pathways and the use of retroviral vectors to retarget immune cells to recognize and eliminate tumor cells. Retroviral-mediated gene transfer has allowed efficient production of T cells engineered with chimeric antigen receptors (CARs), which have demonstrated marked success in the treatment of hematological malignancies. As a safety point, these modified cells can be outfitted with suicide genes. Customized gene editing tools, such as clustered regularly interspaced short palindromic repeats-CRISPR-associated nucleases (CRISPR-Cas9), zinc-finger nucleases (ZFNs), or TAL-effector nucleases (TALENs), may also be combined with retroviral delivery to specifically delete oncogenes, inactivate oncogenic signaling pathways, or deliver wild-type genes. Additionally, the feasibility of retroviral gene transfer strategies to protect the hematopoietic stem cells (HSC) from the dose-limiting toxic effects of chemotherapy and radiotherapy was demonstrated. While some of these approaches have yet to be translated into clinical application, the potential implications for improved cellular replacement therapies to enhance and/or support the current treatment modalities are enormous.
Collapse
|
5
|
Gene therapy for radioprotection. Cancer Gene Ther 2015; 22:172-80. [PMID: 25721205 DOI: 10.1038/cgt.2015.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Abstract
Radiation therapy is a critical component of cancer treatment with over half of patients receiving radiation during their treatment. Despite advances in image-guided therapy and dose fractionation, patients receiving radiation therapy are still at risk for side effects due to off-target radiation damage of normal tissues. To reduce normal tissue damage, researchers have sought radioprotectors, which are agents capable of protecting tissue against radiation by preventing radiation damage from occurring or by decreasing cell death in the presence of radiation damage. Although much early research focused on small-molecule radioprotectors, there has been a growing interest in gene therapy for radioprotection. The amenability of gene therapy vectors to targeting, as well as the flexibility of gene therapy to accomplish ablation or augmentation of biologically relevant genes, makes gene therapy an excellent strategy for radioprotection. Future improvements to vector targeting and delivery should greatly enhance radioprotection through gene therapy.
Collapse
|
6
|
Radioprotection of normal tissue cells. Strahlenther Onkol 2014; 190:745-52. [DOI: 10.1007/s00066-014-0637-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022]
|
7
|
The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation. PLoS One 2014; 9:e84991. [PMID: 24465461 PMCID: PMC3898915 DOI: 10.1371/journal.pone.0084991] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Novel radiotherapy techniques increasingly use very large dose fractions. It has been argued that the biological effect of large dose fractions may differ from that of conventional fraction sizes. The purpose was to study the biological effect of large single doses. MATERIAL AND METHODS Clonogenic cell survival of MCF7 and MDA-MB-231 cells was determined after direct X-ray irradiation, irradiation of feeder cells, or transfer of conditioned medium (CM). Cell-cycle distributions and the apoptotic sub-G1 fraction were measured by flow cytometry. Cytokines in CM were quantified by a cytokine antibody array. γH2AX foci were detected by immunofluorescence microscopy. RESULTS The surviving fraction of MCF7 cells irradiated in vitro with 12 Gy showed an 8.5-fold decrease (95% c.i.: 4.4-16.3; P<0.0001) when the density of irradiated cells was increased from 10 to 50×10(3) cells per flask. Part of this effect was due to a dose-dependent transferrable factor as shown in CM experiments in the dose range 5-15 Gy. While no effect on apoptosis and cell cycle distribution was observed, and no differentially expressed cytokine could be identified, the transferable factor induced prolonged expression of γH2AX DNA repair foci at 1-12 h. CONCLUSIONS A dose-dependent non-targeted effect on clonogenic cell survival was found in the dose range 5-15 Gy. The dependence of SF on cell numbers at high doses would represent a "cohort effect" in vivo. These results support the hypothesis that non-targeted effects may contribute to the efficacy of very large dose fractions in radiotherapy.
Collapse
|
8
|
Mitogenic signalling in the absence of epidermal growth factor receptor activation in a human glioblastoma cell line. J Neurooncol 2013; 115:323-31. [DOI: 10.1007/s11060-013-1232-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/21/2013] [Indexed: 01/09/2023]
|
9
|
Li XF, Ma L, Lu J, Kong LX, Long XH, Liao SH, Chi BR. Effect of ionizing radiation on transcription of colorectal cancer MDR1 gene of HCT-8 cells. ASIAN PAC J TROP MED 2013; 6:407-9. [PMID: 23608383 DOI: 10.1016/s1995-7645(13)60048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/15/2013] [Accepted: 03/15/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To discuss effect of ionizing radiation on transcription of colorectal cancer multidrug resistance (MDR) 1 gene of HCT-8 cells. METHODS Total RNA was extracted by guanidine thiocyanate one-step method. Northern blot was applied to detect transcription level of MDR1 gene. The expression of P-gp protein was detected by flow cytometry. RESULTS The expression of MDR1 of normal colorectal cancer HCT-8 cells was low. It was increased by 8.35 times under stimulus with 2 Gy. When treated with low doses in advance, high expressed MDR was decreased significantly under 0.05, 0.1 Gy, which was 69.00%, 62.89% in 2 Gy group and 5.77 times, 5.25 times in sham irradiation group. No obvious difference was detected between (0.2+2) Gy group and 2 Gy group. Compared with sham irradiation group, the percentage of P-gp positive cells after radiation of a high 2 Gy dose was increased significantly (P<0.01). When treated with high radiation dose following low radiation dose (0.05 Gy, 0.1 Gy) in advance, the percentage of P-gp positive cells were also increased significantly. The percentage of P-gp positive cells were increased obviously in 0.2 Gy and 2 Gy groups. Compared with simple high radiation 2 Gy group, the percentage of P-gp positive cells was decreased significantly (P<0.05). CONCLUSIONS Low radiation dose can reverse multidrug resistance of colorectal cancer cells caused by high radiation dose.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Gastroenterology Department, Fifth Hospital of Sun Yat-sen University Zhuhai 51900, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Deborah Rund
- Hematology Department, Hebrew University-Hadassah Medical Organization, Jerusalem, Israel.
| |
Collapse
|
11
|
Ji XN, Yang F, Sui XM, Wang FG, Ge RG, Quan XL, Zhao T, Gao BW, Wang RY. Effect of fractionated irradiation on the expression of multidrug resistance genes in the CNE1 human nasopharyngeal carcinoma cell line. Mol Med Rep 2012; 7:187-94. [PMID: 23128850 DOI: 10.3892/mmr.2012.1148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/20/2012] [Indexed: 11/05/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) often develops drug resistance following radiotherapy. The molecular basis of radiotherapy-related multidrug resistance (MDR) remains unclear. In the present study, we investigated the effect of fractionated irradiation on the expression of the MDR-1 gene and the MDR-associated protein P-glycoprotein (P-gp) in CNE1 human NPC cells. CNE1 cells were treated with fractionated X-rays. Drug resistance was determined by MTT assay. The expression levels of MDR-1 and P-gp were analyzed by RT-PCR and western blot analysis, respectively. Differential expression was analyzed by gene chips. The results revealed that low levels of mRNA expression of MDR1 were present in non-irradiated CNE1 cells. Compared with the control, the expression of MDR1 mRNA was gradually increased following fractionated irradiation. On day 21, the expression of MDR1 mRNA was increased 1.59- and 2.19-fold, compared with the control, by treatment with 10 and 20 Gy, respectively. We observed decreased MDR1 expression following treatment with 10 and 20 Gy irradiation on days 28 and 35, compared with day 21. On days 21, 28 and 35, expression was increased 1.37-, 1.40- and 1.15-fold by treatment with 20 Gy compared with 10 Gy. Expression of MDR1 was significantly upregulated by treatment with 50 Gy irradiation compared with the control on days 78 and 106. P-gp expression was consistent with that of MDR1 mRNA expression. The sensitivity of CNE1 cells to cisplatin was reduced following irradiation compared with the control. A total of 26 genes were significantly upregulated and 8 genes were significantly downregulated compared with the control. Results of the present study have shown that MDR1 and P-gp are upregulated in CNE1 cells following irradiation. Multiple genes were involved in the mechanism of radiation-induced drug resistance.
Collapse
Affiliation(s)
- Xue-Ning Ji
- Department of Oncology, Zhongshan Hospital, Dalian University, Dalian 116001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Veldwijk MR, Trah J, Wang M, Maier P, Fruehauf S, Zeller WJ, Herskind C, Wenz F. Overexpression of Manganese Superoxide Dismutase Does Not Increase Clonogenic Cell Survival Despite Effect on Apoptosis in Irradiated Lymphoblastoid Cells. Radiat Res 2011; 176:725-31. [DOI: 10.1667/rr2651.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
He Y, Bi Y, Hua Y, Liu D, Wen S, Wang Q, Li M, Zhu J, Lin T, He D, Li X, Wang Z, Wei G. Ultrasound microbubble-mediated delivery of the siRNAs targeting MDR1 reduces drug resistance of yolk sac carcinoma L2 cells. J Exp Clin Cancer Res 2011; 30:104. [PMID: 22035293 PMCID: PMC3213040 DOI: 10.1186/1756-9966-30-104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background MDR1 gene encoding P-glycoprotein is an ATP-dependent drug efflux transporter and related to drug resistance of yolk sac carcinoma. Ultrasound microbubble-mediated delivery has been used as a novel and effective gene delivery method. We hypothesize that small interfering RNA (siRNA) targeting MDR1 gene (siMDR1) delivery with microbubble and ultrasound can down-regulate MDR1 expression and improve responsiveness to chemotherapeutic drugs for yolk sac carcinoma in vitro. Methods Retroviral knockdown vector pSEB-siMDR1s containing specific siRNA sites targeting rat MDR1 coding region were constructed and sequence verified. The resultant pSEB-siMDR1 plasmids DNA were encapsulated with lipid microbubble and the DNA release were triggered by ultrasound when added to culture cells. GFP positive cells were counted by flow cytometry to determine transfection efficiency. Quantitative real-time PCR and western blot were performed to determine the mRNA and protein expression of MDR1. P-glycoprotein function and drug sensitivity were analyzed by Daunorubicin accumulation and MTT assays. Results Transfection efficiency of pSEB-siMDR1 DNA was significantly increased by ultrasound microbubble-mediated delivery in rat yolk sac carcinoma L2 (L2-RYC) cells. Ultrasound microbubble-mediated siMDR1s delivery effectively inhibited MDR1 expression at both mRNA and protein levels and decreased P-glycoprotein function. Silencing MDR1 led to decreased cell viability and IC50 of Vincristine and Dactinomycin. Conclusions Our results demonstrated that ultrasound microbubble-mediated delivery of MDR1 siRNA was safe and effective in L2-RYC cells. MDR1 silencing led to decreased P-glycoprotein activity and drug resistance of L2-RYC cells, which may be explored as a novel approach of combined gene and chemotherapy for yolk sac carcinoma.
Collapse
Affiliation(s)
- Yun He
- Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Efferth T, Langguth P. Transport processes of radiopharmaceuticals and -modulators. Radiat Oncol 2011; 6:59. [PMID: 21645349 PMCID: PMC3141524 DOI: 10.1186/1748-717x-6-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/06/2011] [Indexed: 01/25/2023] Open
Abstract
Radiotherapy and radiology have been indispensable components in cancer care for many years. The detection limit of small tumor foci as well as the development of radio-resistance and severe side effects towards normal tissues led to the development of strategies to improve radio-diagnostic and -therapeutic approaches by pharmaceuticals. The term "radiopharmaceutical" has been used for drugs labeled with radioactive tracers for therapy or diagnosis. In addition, drugs have been described to sensitize tumor cells to radiotherapy (radiosensitizers) or to protect normal tissues from detrimental effects of radiation (radioprotectors). The present review summarizes recent concepts on the transport of radiopharmaceuticals, radiosensitizers, and radioprotectors in cells and tissues, e.g. by ATP-binding cassette transporters such as P-glycoprotein. Strengths and weaknesses of current strategies to improve transport-based processes are discussed.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|
15
|
|
16
|
Jeltsch KS, Radke TF, Laufs S, Giordano FA, Allgayer H, Wenz F, Zeller WJ, Kögler G, Fruehauf S, Maier P. Unrestricted somatic stem cells: interaction with CD34+ cells in vitro and in vivo, expression of homing genes and exclusion of tumorigenic potential. Cytotherapy 2011; 13:357-65. [DOI: 10.3109/14653249.2010.523076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Maier P, Herskind C, Barzan D, Zeller WJ, Wenz F. SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Res 2010; 173:612-9. [PMID: 20426660 DOI: 10.1667/rr1952.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tumor radiotherapy with large-field irradiation results in an increase of p53-dependent apoptosis of the radiosensitive hematopoietic stem cells. Proapoptotic PUMA is a transcriptional target of p53. Thus suppression of PUMA expression by gene therapy with the transcription repressor SNAI2 as transgene might be a potential approach for normal tissue protection during radiotherapy. SNAI2 cDNA was cloned in a lentiviral SIN vector in a bicistronic expression cassette followed by a floxed IRES-EMCV linker and EGFP as selection gene. Wild-type p53 TK6 cells were used as the cellular model system. We could demonstrate the significant radioprotective effect of SNAI2 overexpression in a cytotoxicity assay after irradiation with 0-5 Gy compared with untransduced or control vector (inverse oriented SNAI2 cDNA)-transduced cells. Additionally, TK6-SNAI2 compared to TK6-SNAI2inv cells showed a survival advantage in a clonogenic assay after irradiation with 0-3 Gy. Determination of the proportion of sub-G(1) cells in TK6-SNAI2 cells revealed an approximately 50% reduction in apoptosis compared with both control entities. In this study using a bicistronic lentiviral vector, we were able to provide proof of principle that lentiviral overexpression of SNAI2 might be used for radioprotective gene therapy to widen the therapeutic range in radiotherapy.
Collapse
Affiliation(s)
- Patrick Maier
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
18
|
Bottova I, Sauder U, Olivieri V, Hehl AB, Sonda S. The P-glycoprotein inhibitor GF120918 modulates Ca2+-dependent processes and lipid metabolism in Toxoplasma gondii. PLoS One 2010; 5:e10062. [PMID: 20386707 PMCID: PMC2851653 DOI: 10.1371/journal.pone.0010062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/15/2010] [Indexed: 11/18/2022] Open
Abstract
Up-regulation of the membrane-bound efflux pump P-glycoprotein (P-gp) is associated with the phenomenon of multidrug-resistance in pathogenic organisms, including protozoan parasites. In addition, P-gp plays a role in normal physiological processes, however our understanding of these P-gp functions remains limited. In this study we investigated the effects of the P-gp inhibitor GF120918 in Toxoplasma gondii, a model apicomplexan parasite and an important human pathogen. We found that GF120918 treatment severely inhibited parasite invasion and replication. Further analyses of the molecular mechanisms involved revealed that the P-gp inhibitor modulated parasite motility, microneme secretion and egress from the host cell, all cellular processes known to depend on Ca2+ signaling in the parasite. In support of a potential role of P-gp in Ca2+-mediated processes, immunoelectron and fluorescence microscopy showed that T. gondii P-gp was localized in acidocalcisomes, the major Ca2+ storage in the parasite, at the plasma membrane, and in the intravacuolar tubular network. In addition, metabolic labeling of extracellular parasites revealed that inhibition or down-regulation of T. gondii P-gp resulted in aberrant lipid synthesis. These results suggest a crucial role of T. gondii P-gp in essential processes of the parasite biology and further validate the potential of P-gp activity as a target for drug development.
Collapse
Affiliation(s)
- Iveta Bottova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | | | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Overexpression of Caveolin-1 in Lymphoblastoid TK6 Cells Enhances Proliferation After Irradiation with Clinically Relevant Doses. Strahlenther Onkol 2010; 186:99-106. [DOI: 10.1007/s00066-010-2029-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 10/15/2009] [Indexed: 12/23/2022]
|
20
|
Kawaji H, Hayashizaki Y, Daub CO. SDRF2GRAPH: a visualization tool of a spreadsheet-based description of experimental processes. BMC Bioinformatics 2009; 10:133. [PMID: 19422683 PMCID: PMC2689195 DOI: 10.1186/1471-2105-10-133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 05/07/2009] [Indexed: 11/15/2022] Open
Abstract
Background As larger datasets are produced with the development of genome-scale experimental techniques, it has become essential to explicitly describe the meta-data (information describing the data) generated by an experiment. The experimental process is a part of the meta-data required to interpret the produced data, and SDRF (Sample and Data Relationship Format) supports its description in a spreadsheet or tab-delimited file. This format was primarily developed to describe microarray studies in MAGE-tab, and it is being applied in a broader context in ISA-tab. While the format provides an explicit framework to describe experiments, increase of experimental steps makes it less obvious to understand the content of the SDRF files. Results Here, we describe a new tool, SDRF2GRAPH, for displaying experimental steps described in an SDRF file as an investigation design graph, a directed acyclic graph representing experimental steps. A spreadsheet, in Microsoft Excel for example, which is used to edit and inspect the descriptions, can be directly input via a web-based interface without converting to tab-delimited text. This makes it much easier to organize large contents of SDRF described in multiple spreadsheets. Conclusion SDRF2GRAPH is applicable for a wide range of SDRF files for not only microarray-based analysis but also other genome-scale technologies, such as next generation sequencers. Visualization of the Investigation Design Graph (IDG) structure leads to an easy understanding of the experimental process described in the SDRF files even if the experiment is complicated, and such visualization also encourages the creation of SDRF files by providing prompt visual feedback.
Collapse
Affiliation(s)
- Hideya Kawaji
- RIKEN Omics Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan.
| | | | | |
Collapse
|
21
|
Maier P, Herskind C, Fleckenstein K, Spier I, Laufs S, Zeller WJ, Fruehauf S, Wenz F. MDR1 gene transfer using a lentiviral SIN vector confers radioprotection to human CD34+ hematopoietic progenitor cells. Radiat Res 2008; 169:301-10. [PMID: 18302483 DOI: 10.1667/rr1067.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 10/15/2007] [Indexed: 02/05/2023]
Abstract
Tumor radiotherapy with large-field irradiation results in an increase in apoptosis of the radiosensitive hematopoietic stem cells (CD34(+)). The aim of this study was to demonstrate the radioprotective potential of MDR1 overexpression in human CD34(+) cells using a lentiviral self-inactivating vector. Transduced human undifferentiated CD34(+) cells were irradiated with 0-8 Gy and held in liquid culture under myeloid-specific maturation conditions. After 12 days, MDR1 expression was determined by the rhodamine efflux assay. The proportion of MDR1-positive cells in cells from four human donors increased with increasing radiation dose (up to a 14-fold increase at 8 Gy). Determination of expression of myeloid-specific surface marker proteins revealed that myeloid differentiation was not affected by transduction and MDR1 overexpression. Irradiation after myeloid differentiation also led to an increase of MDR1-positive cells with escalating radiation doses (e.g. 12.5-16% from 0-8 Gy). Most importantly, fractionated irradiation (3 x 2 Gy; 24-h intervals) of MDR1-transduced CD34(+) cells resulted in an increase in MDR1-positive cells (e.g. 3-8% from 0-3 x 2 Gy). Our results clearly support a radioprotective effect of lentiviral MDR1 overexpression in human CD34(+) cells. Thus enhancing repopulation by surviving stem cells may increase the radiation tolerance of the hematopoietic system, which will contribute to widening the therapeutic index in radiotherapy.
Collapse
Affiliation(s)
- Patrick Maier
- Department of Radiation Oncology, Mannheim Medical Centre, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bozorgmehr F, Laufs S, Sellers SE, Roeder I, Zeller WJ, Zeller WJ, Dunbar CE, Fruehauf S. No Evidence of Clonal Dominance in Primates up to 4 Years Following Transplantation of Multidrug Resistance 1 Retrovirally Transduced Long-Term Repopulating Cells. Stem Cells 2007; 25:2610-8. [PMID: 17615269 DOI: 10.1634/stemcells.2007-0017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous murine studies have suggested that retroviral multidrug resistance 1 (MDR1) gene transfer may be associated with a myeloproliferative disorder. Analyses at a clonal level and prolonged long-term follow-up in a model with more direct relevance to human biology were lacking. In this study, we analyzed the contribution of individual CD34-selected peripheral blood progenitor cells to long-term rhesus macaque hematopoiesis after transduction with a retroviral vector either expressing the multidrug resistance 1 gene (HaMDR1 vector) or expressing the neomycin resistance (NeoR) gene (G1Na vector). We found a total of 122 contributing clones from 8 weeks up to 4 years after transplantation. One hundred two clones contained the G1Na vector, whereas only 20 clones contained the HaMDR1 vector. Here, we show for the first time real-time polymerase chain reaction based quantification of individual transduced cell clones constituting 0.0008% +/- 0.0003% to 0.0041% +/- 0.00032% of primate peripheral blood cells. No clonal dominance was observed. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Farastuk Bozorgmehr
- Research Group Pharmacology of Cancer Treatment, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|