1
|
Unverricht-Yeboah M, Von Ameln M, Kriehuber R. Induction of Chromosomal Aberrations after Exposure to the Auger Electron Emitter Iodine-125, the β--emitter Tritium and Cesium-137 γ rays. Radiat Res 2024; 201:479-486. [PMID: 38407403 DOI: 10.1667/rade-23-00158.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
High-LET-type cell survival curves have been observed in cells that were allowed to incorporate 125I-UdR into their DNA. Incorporation of tritiated thymidine into the DNA of cells has also been shown to result in an increase in relative biological effectiveness in cell survival experiments, but the increase is smaller than observed after incorporation of 125I-UdR. These findings are explained in the literature by the overall complexity of the induced DNA damage resulting from energies of the ejected electron(s) during the decay of 3H and 125I. Chromosomal aberrations (CA) are defined as morphological or structural changes of one or more chromosomes, and can be induced by ionizing radiation. Whether the number of CA is associated with the linear energy transfer (LET) of the radiation and/or the actual complexity of the induced DNA double-strand breaks (DSB) remains elusive. In this study, we investigated whether DNA lesions induced at different cell cycle stages and by different radiation types [Auger-electrons (125I), β- particles (3H), or γ radiation (137Cs)] have an impact on the number of CA induced after induction of the same number of DSB as determined by the γ-H2AX foci assay. Cells were synchronized and pulse-labeled in S phase with low activities of 125I-UdR or tritiated thymidine. For decay accumulation, cells were cryopreserved either after pulse-labeling in S phase or after progression to G2/M or G1 phase. Experiments with γ irradiation (137Cs) were performed with synchronized and cryopreserved cells in S, G2/M or G1 phase. After thawing, a CA assay was performed. All experiments were performed after a similar number of DSB were induced. CA induction after 125I-UdR was incorporated was 2.9-fold and 1.7-fold greater compared to exposure to γ radiation and radiation from incorporated tritiated thymidine, respectively, when measured in G2/M cells. In addition, measurement of CA in G2/M cells after incorporation of 125I-UdR was 2.5-fold greater when compared to cells in G1 phase. In contrast, no differences were observed between the three radiation qualities with respect to exposure after cryopreservation in S or G1 phase. The data indicate that the 3D organization of replicated DNA in G2/M cells seems to be more sensitive to induction of more complex DNA lesions compared to the DNA architecture in S or G1 cells. Whether this is due to the DNA organization itself or differences in DNA repair capability remains unclear.
Collapse
Affiliation(s)
- M Unverricht-Yeboah
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - M Von Ameln
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - R Kriehuber
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| |
Collapse
|
2
|
Matsumoto H, Shimada Y, Nakamura AJ, Usami N, Ojima M, Kakinuma S, Shimada M, Sunaoshi M, Hirayama R, Tauchi H. Health effects triggered by tritium: how do we get public understanding based on scientifically supported evidence? JOURNAL OF RADIATION RESEARCH 2021; 62:557-563. [PMID: 33912931 PMCID: PMC8273802 DOI: 10.1093/jrr/rrab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The Commission for 'Corresponding to Radiation Disaster of the Japanese Radiation Research Society' formulated a description of potential health effects triggered by tritium. This was in response to the issue of discharging water containing tritium filtered by the Advanced Liquid Processing System (ALPS), generated and stored in Fukushima Daiichi Nuclear Power Station after the accident. In this review article, the contents of the description, originally provided in Japanese, which gives clear and detailed explanation about potential health effects triggered by tritium based on reliable scientific evidence in an understandable way for the public, were summarized. Then, additional information about biochemical or environmental behavior of organically bound tritium (OBT) were summarized in order to help scientists who communicate with general public.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Experimental Radiology and Health Physics, University of Fukui School of Medical Sciences, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Yoshiya Shimada
- Institute for Environmental Sciences, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Asako J Nakamura
- Department of Biological Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Noriko Usami
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Mitsuaki Ojima
- Department of Environmental Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Oookayaka, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Hiroshi Tauchi
- Corresponding author. Hiroshi Tauchi, Ph.D., Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan. Phone +81-29-228-8383 / Fax +81-29-228-8403;
| |
Collapse
|
3
|
Quan Y, Lin J, Deng B. The response of human mesenchymal stem cells to internal exposure to tritium β-rays. JOURNAL OF RADIATION RESEARCH 2019; 60:476-482. [PMID: 31165153 PMCID: PMC6640910 DOI: 10.1093/jrr/rrz037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/04/2019] [Indexed: 05/04/2023]
Abstract
There is no doubt that estimating the exposure risk of external and internal low-dose radiation is an imperative issue in radiobiological study. Human mesenchymal stem cells (hMSCs) are multipotent and self-renewing, supporting the regeneration of damaged tissue, including tissue damaged by radiation. However, the responses of hMSCs to internal exposure to radionuclides are still insufficiently understood. In order to evaluate the adverse effects produced by internal exposure to tritiated water (HTO) at a low dose, hMSCs were exposed to 2 × 107 Bq/ml HTO, and the biological effects after the exposure were examined. Apoptosis and DNA double-strand breaks (DSBs) were assayed to analyze the cellular response to the damage induced by HTO. Slight enhancement of apoptosis was found after treatment, except at the dose of 9 mGy. The number of DSBs at 24 h post-irradiation showed that the DNA damage was able to be efficiently repaired by the hMSCs. Moreover, the increasing proportion of the cell population in S phase proved that the persistence of residual γH2AX foci at lower concentrations of HTO was attributable to the secondary production of DSBs in DNA replication. Our work adds to the available data, helping us understand the risk of stem cell transformation due to internal exposure and its correlation with low-dose radiation-induced carcinogenesis.
Collapse
Affiliation(s)
- Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, People’s Republic of China
| | - Jinxian Lin
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, People’s Republic of China
| | - Bing Deng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, People’s Republic of China
| |
Collapse
|
4
|
Saintigny Y, Chevalier F, Bravard A, Dardillac E, Laurent D, Hem S, Dépagne J, Radicella JP, Lopez BS. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis. Sci Rep 2016; 6:29412. [PMID: 27406380 PMCID: PMC4942696 DOI: 10.1038/srep29412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023] Open
Abstract
Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [(3)H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses.
Collapse
Affiliation(s)
- Yannick Saintigny
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - François Chevalier
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - Anne Bravard
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR967 INSERM/CEA/Universités Paris Diderot et Paris Saclay, Fontenay aux Roses, F-92265, France
| | - Elodie Dardillac
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR 8200 CNRS, Institut de cancérologie Gustave Roussy, Université Paris-Saclay, équipe labélisée par la Ligue bationale contre le Cancer "LIGUE 2014", Villejuif, F-94805, France
| | - David Laurent
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - Sonia Hem
- Plateforme de spectrométrie de masse protéomique - MSPP, Biochimie et physiologie moléculaire des plantes, CNRS, INRA, Montpellier Supagro, Univ. Montpellier, 34060 Montpellier, France
| | - Jordane Dépagne
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France
| | - J Pablo Radicella
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR967 INSERM/CEA/Universités Paris Diderot et Paris Saclay, Fontenay aux Roses, F-92265, France
| | - Bernard S Lopez
- Institute of Cellular and Molecular Radiobiology -Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, F-92265, France.,UMR 8200 CNRS, Institut de cancérologie Gustave Roussy, Université Paris-Saclay, équipe labélisée par la Ligue bationale contre le Cancer "LIGUE 2014", Villejuif, F-94805, France
| |
Collapse
|
5
|
Kumar C, Shetake N, Desai S, Kumar A, Samuel G, Pandey BN. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int J Radiat Biol 2016; 92:173-86. [PMID: 26917443 DOI: 10.3109/09553002.2016.1144944] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Radionuclide therapy (RNT) is a rapidly growing area of clinical nuclear medicine, wherein radionuclides are employed to deliver cytotoxic dose of radiation to the diseased cells/tissues. During RNT, radionuclides are either directly administered or delivered through biomolecules targeting the diseased site. RNT has been clinically used for diverse range of diseases including cancer, which is the focus of the review. CONCLUSIONS The major emphasis in RNT has so far been given towards developing peptides/antibodies and other molecules to conjugate a variety of therapeutic radioisotopes for improved targeting/delivery of radiation dose to the tumor cells. Despite that, many of the RNT approaches have not achieved their desired therapeutic success probably due to poor knowledge about complex and dynamic (i) fate of radiolabeled molecules; (ii) radiation dose delivered; (iii) cellular heterogeneity in tumor mass; and (iv) cellular radiobiological response. Based on understanding gathered during recent years, it may be stated that besides the absorbed dose, the net radiobiological response of tumor/normal cells also determines the clinical response of radiotherapeutic modalities including RNT. The radiosensitivity of tumor/normal cells is governed by radiobiological phenomenon such as radiation-induced bystander effect, genomic instability, adaptive response and low dose hyper-radiosensitivity. These concepts have been well investigated in the context of external beam radiotherapy, but their clinical implications during RNT have received meagre attention. In this direction, a few studies performed using in vitro and in vivo models envisage the possibilities of exploiting the radiobiological knowledge for improved therapeutic outcome of RNT.
Collapse
Affiliation(s)
- Chandan Kumar
- a Radiopharmaceutical Chemistry Section , Bhabha Atomic Research Centre , Mumbai
| | - Neena Shetake
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai
| | - Sejal Desai
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Amit Kumar
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Grace Samuel
- c Isotope Production and Applications Division , Bhabha Atomic Research Centre , Mumbai
| | - Badri N Pandey
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| |
Collapse
|
6
|
Di Giacomo F, Granotier C, Barroca V, Laurent D, Boussin FD, Lewandowski D, Saintigny Y, Romeo PH. Tritium contamination of hematopoietic stem cells alters long-term hematopoietic reconstitution. Int J Radiat Biol 2011; 87:556-70. [PMID: 21473673 DOI: 10.3109/09553002.2011.565399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([(3)H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). MATERIALS AND METHODS Mouse HSC were contaminated with concentrations of [(3)H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [(3)H] Thymidine contamination. RESULTS Proliferation, viability and double-strand breaks were dependent on [(3)H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [(3)H] Thymidine contamination. [(3)H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. CONCLUSION These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC.
Collapse
Affiliation(s)
- Fabio Di Giacomo
- Commissariat à l'Energie Atomique (CEA)/Direction des Sciences du Vivant (DSV)/Institut de Radiobiologie Cellulaire et Moléculaire (iRCM)/Laboratoire de recherche sur la Réparation et la Transcription dans les cellules Souches (LRTS, Fontenay-aux-Roses cedex, 92265
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Le Guen B. Impact of tritium around EDF nuclear power plants. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2009; 29:163-173. [PMID: 19454788 DOI: 10.1088/0952-4746/29/2/004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although the radionuclide tritium is found in its natural state, its presence in the environment is often associated with nuclear power generation. With the construction of the new EPR reactor at Flamanville under way, and the renewal of release permits for existing sites, this paper seeks to provide a summary of scientific facts, measurements taken around nuclear sites and impact studies regarding the impact assessment of this radionuclide on humans and the environment.
Collapse
Affiliation(s)
- B Le Guen
- EDF Radiation Protection Council (CRP) and EDF, DPN, Nuclear Power operation, 1, Place Pleyel, 93282 Saint Denis, Cedex, France.
| |
Collapse
|