1
|
Terashima S, Tatemura R, Saito W, Hosokawa Y. Evaluation of the influence of radiation-induced cohort effect in cell populations receiving different doses. Int J Radiat Biol 2025; 101:341-350. [PMID: 39899278 DOI: 10.1080/09553002.2025.2459086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE A non-targeted effect called radiation-induced cohort effect, which results in interactions among irradiated neighboring cells through cellular communication, has been reported. In high-precision radiotherapy, the dose is localized to the tumor, and rapid spatial changes occur in dose distribution. However, the effect of irradiating a population of cells with non-uniform doses remains unknown. In this study, we evaluated the influence of cohort effect by creating cell populations irradiated with different doses using human oral squamous cell carcinoma (SAS) and human lung (A549) cells. MATERIALS AND METHODS Cell populations irradiated with different doses were created in two ways: direct contact co-culture (DCC) using a cell tracer dye and indirect contact co-culture (ICC) using cell culture inserts to assess the effects of soluble factors. Target cells were irradiated with 4 Gy and co-cultured cells with 0, 0.8, 3.2, and 4 Gy. In DCC, cell proliferation assays were performed using a flow cytometer, and in ICC, modified high-density survival, clonogenic, and apoptosis assays were performed. RESULTS In DCC, irradiation of co-cultured cells with X-rays increased the relative proliferation rate of the target cells. Similarly, irradiating co-cultured cells using ICC with X-rays increased the relative survival rate of target cells. CONCLUSIONS The results of this study showed that, even if there is a sharp decrease in dose near the tumor, the cytocidal effect on the tumor is not adversely affected. In addition, soluble factors were found to be involved in cohort effect.
Collapse
Affiliation(s)
- Shingo Terashima
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Ryota Tatemura
- Department of Radiology, Division of Medical Technology, Hirosaki University School of Medicine and Hospital, Hirosaki, Japan
| | - Wataru Saito
- Plant Operation Department, Reprocessing Plant, Reprocessing Business Division, Japan Nuclear Fuel Limited, Rokkasho-mura, Japan
| | - Yoichiro Hosokawa
- Department of Rehabilitation Sciences, Hirosaki University of Health and Welfare, Hirosaki, Japan
| |
Collapse
|
2
|
Cahoon P, Giacometti V, Casey F, Russell E, McGarry C, Prise KM, McMahon SJ. Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach. Phys Med Biol 2021; 66. [PMID: 34666318 DOI: 10.1088/1361-6560/ac3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022]
Abstract
Radiation induced bystander effects (RIBEs) have been shown to cause death in cells receiving little or no physical dose. In standard radiotherapy, where uniform fields are delivered and all cells are directly exposed to radiation, this phenomenon can be neglected. However, the role of RIBEs may become more influential when heterogeneous fields are considered. Mathematical modelling can be used to determine how these heterogeneous fields might influence cell survival, but most established techniques account only for the direct effects of radiation. To gain a full appreciation of how non-uniform fields impact cell survival, it is also necessary to consider the indirect effects of radiation. In this work, we utilise a mathematical model that accounts for both the direct effects of radiation on cells and RIBEs. This model is used to investigate how spatially fractionated radiotherapy plans impact cell survivalin vitro. These predictions were compared to survival in normal and cancerous cells following exposure to spatially fractionated plans using a clinical linac. The model is also used to explore how spatially fractionated radiotherapy will impact tumour controlin vivo. Results suggest that spatially fractionated plans are associated with higher equivalent uniform doses than conventional uniform plans at clinically relevant doses. The model predicted only small changes changes in normal tissue complication probability, compared to the larger protection seen clinically. This contradicts a central paradigm of radiotherapy where uniform fields are assumed to maximise cell kill and may be important for future radiotherapy optimisation.
Collapse
Affiliation(s)
- Paul Cahoon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Valentina Giacometti
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Francis Casey
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom.,Nottingham Radiotherapy Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Emily Russell
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Conor McGarry
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Kevin M Prise
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Suzuki K, Yamashita S. Radiation-Induced Bystander Response: Mechanism and Clinical Implications. Adv Wound Care (New Rochelle) 2014; 3:16-24. [PMID: 24761341 DOI: 10.1089/wound.2013.0468] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023] Open
Abstract
Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Campa A, Balduzzi M, Dini V, Esposito G, Tabocchini MA. The complex interactions between radiation induced non-targeted effects and cancer. Cancer Lett 2013; 356:126-36. [PMID: 24139968 DOI: 10.1016/j.canlet.2013.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023]
Abstract
Radiation induced non-targeted effects have been widely investigated in the last two decades for their potential impact on low dose radiation risk. In this paper we will give an overview of the most relevant aspects related to these effects, starting from the definition of the low dose scenarios. We will underline the role of radiation quality, both in terms of mechanisms of interaction with the biological matter and for the importance of charged particles as powerful tools for low dose effects investigation. We will focus on cell communication, representing a common feature of non-targeted effects, giving also an overview of cancer models that have explicitly considered such effects.
Collapse
Affiliation(s)
- Alessandro Campa
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Balduzzi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy; Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Valentina Dini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Antonella Tabocchini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy.
| |
Collapse
|
5
|
Kundrát P, Friedland W. Non-linear response of cells to signals leads to revised characteristics of bystander effects inferred from their modelling. Int J Radiat Biol 2012; 88:743-50. [DOI: 10.3109/09553002.2012.698029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Szőke I, Farkas A, Balásházy I, Hofmann W, Madas BG, Szőke R. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects. Int J Radiat Biol 2012; 88:477-92. [PMID: 22420832 DOI: 10.3109/09553002.2012.676229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. MATERIALS AND METHODS State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. RESULTS The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. CONCLUSIONS Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.
Collapse
Affiliation(s)
- István Szőke
- Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
7
|
Blyth BJ, Sykes PJ. Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 2011; 176:139-57. [PMID: 21631286 DOI: 10.1667/rr2548.1] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The term radiation-induced bystander effect is used to describe radiation-induced biological changes that manifest in unirradiated cells remaining within an irradiated cell population. Despite their failure to fit into the framework of classical radiobiology, radiation-induced bystander effects have entered the mainstream and have become established in the radiobiology vocabulary as a bona fide radiation response. However, there is still no consensus on a precise definition of radiation-induced bystander effects, which currently encompasses a number of distinct signal-mediated effects. These effects are classified here into three classes: bystander effects, abscopal effects and cohort effects. In this review, the data have been evaluated to define, where possible, various features specific to radiation-induced bystander effects, including their timing, range, potency and dependence on dose, dose rate, radiation quality and cell type. The weight of evidence supporting these defining features is discussed in the context of bystander experimental systems that closely replicate realistic human exposure scenarios. Whether the manifestation of bystander effects in vivo is intrinsically limited to particular radiation exposure scenarios is considered. The conditions under which radiation-induced bystander effects are induced in vivo will ultimately determine their impact on radiation-induced carcinogenic risk.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
8
|
Farkas A, Hofmann W, Balásházy I, Szoke I, Madas BG, Moustafa M. Effect of site-specific bronchial radon progeny deposition on the spatial and temporal distributions of cellular responses. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:281-297. [PMID: 21327807 DOI: 10.1007/s00411-011-0357-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 01/30/2011] [Indexed: 05/30/2023]
Abstract
Inhaled short-lived radon progenies may deposit in bronchial airways and interact with the epithelium by the emission of alpha particles. Simulation of the related radiobiological effects requires the knowledge of space and time distributions of alpha particle hits and biological endpoints. Present modelling efforts include simulation of radioaerosol deposition patterns in a central bronchial airway bifurcation, modelling of human bronchial epithelium, generation of alpha particle tracks, and computation of spatio-temporal distributions of cell nucleus hits, cell killing and cell transformation events. Simulation results indicate that the preferential radionuclide deposition at carinal ridges plays an important role in the space and time evolution of the biological events. While multiple hits are generally rare for low cumulative exposures, their probability may be quite high at the carinal ridges of the airway bifurcations. Likewise, cell killing and transformation events also occur with higher probability in this area. In the case of uniform surface activities, successive hits as well as cell killing and transformation events within a restricted area (say 0.5 mm(2)) are well separated in time. However, in the case of realistic inhomogeneous deposition, they occur more frequently within the mean cycle time of cells located at the carinal ridge even at low cumulative doses. The site-specificity of radionuclide deposition impacts not only on direct, but also on non-targeted radiobiological effects due to intercellular communication. Incorporation of present results into mechanistic models of carcinogenesis may provide useful information concerning the dose-effect relationship in the low-dose range.
Collapse
Affiliation(s)
- Arpád Farkas
- Health and Environmental Physics Department, Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, Konkoly Thege M. út 29-33, 1121, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
9
|
A percolation-like model for simulating inter-cellular diffusion in the context of bystander signalling in tumour. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2010; 34:31-9. [DOI: 10.1007/s13246-010-0048-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
|
10
|
Leonard BE, Thompson RE, Beecher GC. Human lung cancer risks from radon - part I - influence from bystander effects - a microdose analysis. Dose Response 2010; 9:243-92. [PMID: 21731539 DOI: 10.2203/dose-response.09-057.leonard] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Since the publication of the BEIR VI report in 1999 on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, at low domestic and workplace radon levels, in particular the Bystander Effect (BE) and the Adaptive Response radio-protection (AR). We analyzed the microbeam and broadbeam alpha particle data of Miller et al. (1995, 1999), Zhou et al. (2001, 2003, 2004), Nagasawa and Little (1999, 2002), Hei et al. (1999), Sawant et al. (2001a) and found that the shape of the cellular response to alphas is relatively independent of cell species and LET of the alphas. The same alpha particle traversal dose response behavior should be true for human lung tissue exposure to radon progeny alpha particles. In the Bystander Damage Region of the alpha particle response, there is a variation of RBE from about 10 to 35. There is a transition region between the Bystander Damage Region and Direct Damage Region of between one and two microdose alpha particle traversals indicating that perhaps two alpha particle "hits" are necessary to produce the direct damage. Extrapolation of underground miners lung cancer risks to human risks at domestic and workplace levels may not be valid.
Collapse
|
11
|
Leonard BE, Thompson RE, Beecher GC. Human Lung Cancer Risks from Radon - Part II - Influence from Combined Adaptive Response and Bystander Effects - A Microdose Analysis. Dose Response 2010; 9:502-53. [PMID: 22461760 DOI: 10.2203/dose-response.09-058.leonard] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage.
Collapse
|