1
|
Application of Advanced Non-Linear Spectral Decomposition and Regression Methods for Spectroscopic Analysis of Targeted and Non-Targeted Irradiation Effects in an In-Vitro Model. Int J Mol Sci 2022; 23:ijms232112986. [DOI: 10.3390/ijms232112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis.
Collapse
|
2
|
Mohd Zainudin NH, Talik Sisin NN, Rashid RA, Jamil A, Khairil Anuar MA, Razak KA, Abdullah R, Rahman WN. Cellular analysis on the radiation induced bystander effects due to bismuth oxide nanoparticles with 6 MV photon beam radiotherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Khoje ZB, kumarVootla S, David M. Brain DNA damage analysis in pesticide exposed wistar albino rats (Rattus norvegicus): a chemometric approach. J Biomol Struct Dyn 2022; 41:2211-2220. [PMID: 35067187 DOI: 10.1080/07391102.2022.2029566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Brain the most important organ which controls most of the regulations in the body is composed of neurons and glia. As brain has a high metabolic rate and reduced cell renewal capability, the lipids, proteins and nucleic acids become the major targets of damage. In the present study carbofuran (CF) induced brain DNA damage in male wistar albino rats at sub-lethal doses (Control-A; B-1.0, C-0.5 and D-0.3 mg/kg BW) while the groups B1,C1, D1, B2, C2, D2 and B3, C3, D3 represents the exposure duration 30, 60 and 90 days each respectively. FTIR spectroscopy based chemometric analysis of functional groups in nucleic acids are reported, changes in band area and band frequencies were examined to understand the DNA damage by constructing heat map. Significant changes were observed in the band frequency, band areas, bandwidth and intensity values (p < 0.05, 0.01, 0.001). The principal component analysis was analyzed to study the alterations at the molecular level, which revealed maximum variance of 74% in groups A, B1, C1, D1 and C2 and 13.7% variance in B2, D2, B3, C3 and D3. The present study provides significant details to analyse DNA damage using non-conventional approach and can also be used for detecting DNA damage in several neural diseases and disorders and emphasizes on using FTIR spectral data through chemometric approach to analyse the DNA damage.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zabin Begum Khoje
- Department of Studies in Zoology, Karnatak University, Dharwad, Karnataka, India
| | - Shyam kumarVootla
- Department of Studies in Microbiology and Biotechnology, Karnatak University, Dharwad, Karnataka, India
| | - Muniswamy David
- Department of Studies in Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
4
|
Karimi F, Shaabani E, Martínez-Rovira I, Yousef I, Ghahremani MH, Kharrazi S. Infrared microspectroscopy studies on the protective effect of curcumin coated gold nanoparticles against H 2O 2-induced oxidative stress in human neuroblastoma SK-N-SH cells. Analyst 2021; 146:6902-6916. [PMID: 34636832 DOI: 10.1039/d1an01379c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contribution of oxidative stress in several chronic and degenerative diseases suggests that antioxidant therapy can be a promising therapeutic strategy. However, in the case of many antioxidants, their biodistribution and bioactivity are restricted due to low water solubility. Curcumin is a powerful free radical scavenger that upon conjugation to gold nanoparticles results in the formation of stable gold nanoparticles that act as highly water-soluble carriers for the curcumin molecules. In the present study, the effect of curcumin-coated gold nanoparticles (Cur-GNPs) on the H2O2-treated human neuroblastoma (SK-N-SH) cell line was evaluated by using Fourier transform infrared (FTIR) microspectroscopy. Biochemical changes in cells resulting from exposure to reactive oxygen species (ROS) and antioxidant treatment on cells were investigated. Analyzing changes in PO2- bands and amide bands in the fingerprint region and also changes in the ratio of CH2(asym) to CH3(asym) bands in the lipid region revealed that post-treatment with Cur-GNPs could effectively decrease the damage on DNA caused by H2O2 treatment, whereas pre-treatment of cells with Cur-GNPs was found to be more effective at preventing lipid peroxidation than post-treatment. Further analysis of the CH2(asym) to CH3(asym) ratio provided information on not only the lipid peroxidation level in cells, but also the interaction of nanoparticles with the plasma membrane, as confirmed by lactate dehydrogenase assay.
Collapse
Affiliation(s)
- Fateme Karimi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Immaculada Martínez-Rovira
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 09290 Cerdanyola del Vallès, Spain. .,Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona (UAB), Avinguda de l'Eix Central, Edifici C. Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 09290 Cerdanyola del Vallès, Spain.
| | - Mohammad Hossein Ghahremani
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
5
|
FT-IR Transflection Micro-Spectroscopy Study on Normal Human Breast Cells after Exposure to a Proton Beam. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fourier transform infrared micro-spectroscopy (μ-FT-IR) is nowadays considered a valuable tool for investigating the changes occurring in human cells after exposure to ionizing radiation. Recently, considerable attention has been devoted to the use of this optical technique in the study of cells exposed to proton beams, that are being increasingly adopted in cancer therapy. Different experimental configurations are used for proton irradiation and subsequent spectra acquisition. To facilitate the use of μ-FT-IR, it may be useful to investigate new experimental approaches capable of speeding up and simplifying the irradiation and measurements phases. Here, we propose the use of low-e-substrates slides for cell culture, allowing the irradiation and spectra acquisition in transflection mode in a fast and direct way. In recent years, there has been a wide debate about the validity of these supports, but many researchers agree that the artifacts due to the presence of the electromagnetic standing wave effects are negligible in many practical cases. We investigated human normal breast cells (MCF-10 cell line) fixed immediately after the irradiation with graded proton radiation doses (0, 0.5, 2, and 4 Gy). The spectra obtained in transflection geometry showed characteristics very similar to those present in the spectra acquired in transmission geometry and confirm the validity of the chosen approach. The analysis of spectra indicates the occurrence of significant changes in DNA and lipids components of cells. Modifications in protein secondary structure are also evidenced.
Collapse
|
6
|
Serdiuk V, Shogren KL, Kovalenko T, Rasulev B, Yaszemski M, Maran A, Voronov A. Detection of macromolecular inversion-induced structural changes in osteosarcoma cells by FTIR microspectroscopy. Anal Bioanal Chem 2020; 412:7253-7262. [PMID: 32879994 DOI: 10.1007/s00216-020-02858-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) microspectroscopy provides a biochemical fingerprint of the cells. In this study, chemical changes in 143B osteosarcoma cells were investigated using FTIR analysis of cancer cells after their treatment with polymeric invertible micellar assemblies (IMAs) and curcumin-loaded IMAs and compared with untreated osteosarcoma cells. A comprehensive principal component analysis (PCA) was applied to analyze the FTIR results and confirm noticeable changes in cell surface chemical structures in the fingerprint regions of 1480-900 cm-1. The performed clustering shows visible differences for all investigated groups of cancer cells. It is demonstrated that a combination of FTIR microspectroscopy with PCA can be an efficient approach in determining interactions of osteosarcoma cells and drug-loaded polymer micellar assemblies. Graphical abstract.
Collapse
Affiliation(s)
- Vitalii Serdiuk
- Department of Orthopedics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, ND, 58105, USA.,Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, 79013, Ukraine
| | | | - Tetiana Kovalenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, 79013, Ukraine
| | - Bakhtiyor Rasulev
- Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, ND, 58105, USA
| | | | | | - Andriy Voronov
- Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
7
|
Sofińska K, Wilkosz N, Szymoński M, Lipiec E. Molecular Spectroscopic Markers of DNA Damage. Molecules 2020; 25:E561. [PMID: 32012927 PMCID: PMC7037412 DOI: 10.3390/molecules25030561] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage.
Collapse
Affiliation(s)
| | | | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.S.); (N.W.); or (M.S.)
| |
Collapse
|
8
|
Lipiec E, Wood BR, Kulik A, Kwiatek WM, Dietler G. Nanoscale Investigation into the Cellular Response of Glioblastoma Cells Exposed to Protons. Anal Chem 2018; 90:7644-7650. [PMID: 29799188 DOI: 10.1021/acs.analchem.8b01497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exposure to ionizing radiation can induce cellular defense mechanisms including cell activation and rapid proliferation prior to metastasis and in extreme cases can result in cell death. Herewith we apply infrared nano- and microspectroscopy combined with multidimensional data analysis to characterize the effect of ionizing radiation on single glioblastoma nuclei isolated from cells treated with 10 Gy of X-rays or 1 and 10 Gy of protons. We observed chromatin fragmentation related to the formation of apoptotic bodies following X-ray exposure. Following proton irradiation we detected evidence of a DNA conformational change (B-DNA to A-DNA transition) related to DNA repair and accompanied by an increase in protein content related to the synthesis of peptide enzymes involved in DNA repair. We also show that proton exposure can increase cholesterol and sterol ester synthesis, which are important lipids involved in the metastatic process changing the fluidity of the cellular membrane in preparation for rapid proliferation.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow , Poland.,Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.,Centre for Biospectroscopy and School of Chemistry , Monash University , 3800 Clayton , Victoria , Australia
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry , Monash University , 3800 Clayton , Victoria , Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow , Poland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
9
|
Wood BR. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chem Soc Rev 2016; 45:1980-98. [PMID: 26403652 DOI: 10.1039/c5cs00511f] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since Watson and Crick's historical papers on the structure and function of DNA based on Rosalind Franklin's and Maurice Wilkin's X-ray diffraction patterns tremendous scientific curiosity has been aroused by the unique and dynamic structure of the molecule of life. A-DNA and B-DNA represent different conformations of the DNA molecule, which is stabilised by hydrogen interactions between base pairs, stacking interactions between neighboring bases and long-range intra- and inter-backbone forces. This review highlights the contribution Fourier transform infrared (FTIR) spectroscopy has made to the understanding of DNA conformation in relation to hydration and its potential role in clinical diagnostics. The review will first begin by elucidating the main forms of DNA conformation found in nature and the general structures of the A, B and Z forms. This is followed by a detailed critique on infrared spectroscopy applied to DNA conformation highlighting pivotal studies on isolated DNA, polynucleotides, nucleoprotein and nucleohistone complexes. A discussion on the potential of diagnosing cancer using FTIR spectroscopy based on the detection of DNA bands in cells and tissues will ensue, highlighting the recent studies investigating the conformation of DNA in hydrated and dehydrated cells. The method of hydration as a way to facilitate DNA conformational band assignment will be discussed and the conformational change to the A-form upon dehydration will be used to explain the reason for the apparent lack of FTIR DNA signals observed in fixed or air-dried cells and tissues. The advantages of investigating B-DNA in the hydrated state, as opposed to A-DNA in the dehydrated state, are exemplified in a series of studies that show: (1) improved quantification of DNA in cells; (2) improved discrimination and reproducibility of FTIR spectra recorded of cells progressing through the cell cycle; (3) insights into the biological significance of A-DNA as evidenced by an interesting study on bacteria, which can survive desiccation and at the same time undergo the B-A-B transition. Finally, the importance of preserving the B-DNA conformation for the diagnosis of cancer is put forward as way to improve the sensitivity of this powerful technique.
Collapse
Affiliation(s)
- Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, 3800, Victoria, Australia.
| |
Collapse
|
10
|
Yousef I, Seksek O, Gil S, Prezado Y, Sulé-Suso J, Martínez-Rovira I. Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: first FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst 2016; 141:2238-49. [DOI: 10.1039/c5an02378e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One strategy to improve the clinical outcome of radiotherapy is to use nanoparticles as radiosensitizers.
Collapse
Affiliation(s)
- Ibraheem Yousef
- SESAME Synchrotron
- 19252 Allan
- Jordan
- ALBA Synchrotron
- Carrer de la Llum 2-26
| | - Olivier Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| | - Sílvia Gil
- Department of Dermatology
- Hospital Parc Taulí
- Sabadell
- Spain
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| | - Josep Sulé-Suso
- Institute for Science and Technology in Medicine
- Keele University
- Thornburrow Drive
- Stoke on Trent
- UK
| | - Immaculada Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| |
Collapse
|